Solveeit Logo

Question

Question: How do you evaluate \[{e^{\dfrac{\pi }{2}i}} - {e^{\dfrac{{2\pi }}{3}i}}\] using trigonometric funct...

How do you evaluate eπ2ie2π3i{e^{\dfrac{\pi }{2}i}} - {e^{\dfrac{{2\pi }}{3}i}} using trigonometric functions?

Explanation

Solution

We are given an expression in complex exponential form and asked to evaluate the given expression using trigonometric functions. Here, you will need to use the Euler’s formula. Use this formula to change the exponential function into a trigonometric function.

Complete step by step solution:
Given the expression eπ2ie2π3i{e^{\dfrac{\pi }{2}i}} - {e^{\dfrac{{2\pi }}{3}i}}. We are asked to evaluate this expression.Let A=eπ2ie2π3iA = {e^{\dfrac{\pi }{2}i}} - {e^{\dfrac{{2\pi }}{3}i}} ………(i)
We will use here Euler’s formula. Euler’s formula is a formula which shows the relationship between complex exponential function and trigonometric functions. According to Euler’s formula,
eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta ……………(ii)
where cos and sin are trigonometric functions.

The first term of equation (i) is eπ2i{e^{\dfrac{\pi }{2}i}}.
Here θ=π2\theta = \dfrac{\pi }{2}. Putting θ=π2\theta = \dfrac{\pi }{2} in equation (ii) we get,
eπ2i=cosπ2+isinπ2{e^{\dfrac{\pi }{2}i}} = \cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2} ………………(iii)
The second term of equation (i) is e2π3i{e^{\dfrac{{2\pi }}{3}i}}.
Here θ=2π3\theta = \dfrac{{2\pi }}{3}. Putting θ=2π3\theta = \dfrac{{2\pi }}{3} in equation (ii) we get,
e2π3i=cos2π3+isin2π3{e^{\dfrac{{2\pi }}{3}i}} = \cos \dfrac{{2\pi }}{3} + i\sin \dfrac{{2\pi }}{3}................(iv)

Putting the values from equation (iii) and (iv) in equation (i) we get,
A=(cosπ2+isinπ2)(cos2π3+isin2π3)A = \left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right) - \left( {\cos \dfrac{{2\pi }}{3} + i\sin \dfrac{{2\pi }}{3}} \right)
A=0+icos2π3isin2π3\Rightarrow A = 0 + i - \cos \dfrac{{2\pi }}{3} - i\sin \dfrac{{2\pi }}{3}
A=icos(ππ3)isin(ππ3)\Rightarrow A = i - \cos \left( {\pi - \dfrac{\pi }{3}} \right) - i\sin \left( {\pi - \dfrac{\pi }{3}} \right)......................(v)
We know, cos(πx)=cosx\cos \left( {\pi - x} \right) = - \cos x and sin(πx)=sinx\sin \left( {\pi - x} \right) = \sin x. Using these formulas in equation (v) we get,
A=i(cosπ3)isinπ3A = i - \left( { - \cos \dfrac{\pi }{3}} \right) - i\sin \dfrac{\pi }{3}
A=i+cosπ3isinπ3\Rightarrow A = i + \cos \dfrac{\pi }{3} - i\sin \dfrac{\pi }{3}
A=i+1232i\Rightarrow A = i + \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}i
A=12+(132)i\therefore A = \dfrac{1}{2} + \left( {1 - \dfrac{{\sqrt 3 }}{2}} \right)i

Therefore, after evaluating we get eπ2ie2π3i=12+(132)i{e^{\dfrac{\pi }{2}i}} - {e^{\dfrac{{2\pi }}{3}i}} = \dfrac{1}{2} + \left( {1 - \dfrac{{\sqrt 3 }}{2}} \right)i.

Note: Remember that Euler’s formula is used for complex exponential functions and transform it in trigonometric functions. Also remember there are three main functions in trigonometry, these are sine, cosine and tangent. There are three other trigonometric functions which can be written in terms of the main functions, these are cosecant which is inverse of sine, secant which is inverse of cosine and cotangent which is inverse of tangent. Also, while solving questions related to trigonometry, you should always remember the basic formulas of trigonometry.