Solveeit Logo

Question

Question: How do you evaluate \(\cot \left( \arctan \left( \dfrac{3}{5} \right) \right)\)?...

How do you evaluate cot(arctan(35))\cot \left( \arctan \left( \dfrac{3}{5} \right) \right)?

Explanation

Solution

We explain the function arctan(x)arc\tan \left( x \right). We express the inverse function of tan in the form of arctan(x)=tan1xarc\tan \left( x \right)={{\tan }^{-1}}x. We draw the graph of arctan(x)arc\tan \left( x \right) and the line x=35x=\dfrac{3}{5} to find the intersection point. Thereafter we take the cot ratio of that angle to find the solution.

Complete step by step answer:
The given expression is the inverse function of trigonometric ratio tan.
The arcus function represents the angle which on ratio tan gives the value.
So, arctan(x)=tan1xarc\tan \left( x \right)={{\tan }^{-1}}x. If arctan(x)=αarc\tan \left( x \right)=\alpha then we can say tanα=x\tan \alpha =x.
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of 2π2\pi .
The general solution for that value where tanα=x\tan \alpha =x will be nπ+α,nZn\pi +\alpha ,n\in \mathbb{Z}.
But for arctan(x)arc\tan \left( x \right), we won’t find the general solution. We use the principal value. For ratio tan we have π2arctan(x)π2-\dfrac{\pi }{2}\le arc\tan \left( x \right)\le \dfrac{\pi }{2}.
The graph of the function is

We now place the value of x=35x=\dfrac{3}{5} in the function of arctan(x)arc\tan \left( x \right).
Let the angle be θ\theta for which arctan(35)=θarc\tan \left( \dfrac{3}{5} \right)=\theta . This gives tanθ=35\tan \theta =\dfrac{3}{5}.
For this we take the line of x=35x=\dfrac{3}{5} and see the intersection of the line with the graph arctan(x)arc\tan \left( x \right).

Putting the value in the graph of arctan(x)arc\tan \left( x \right), we get θ=30.96\theta =30.96. (approx.)
We get the value of y coordinates as 30.96{{30.96}^{\circ }}.
Now we take cot(arctan(35))=cot(30.96)=53\cot \left( \arctan \left( \dfrac{3}{5} \right) \right)=\cot \left( {{30.96}^{\circ }} \right)=\dfrac{5}{3}.

Therefore, the value of cot(arctan(35))\cot \left( \arctan \left( \dfrac{3}{5} \right) \right) is 53\dfrac{5}{3}.

Note: We can also apply the trigonometric identity where cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta }. Also, in the exact solution domain of π2θπ2-\dfrac{\pi }{2}\le \theta \le \dfrac{\pi }{2}, tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x.using those identities we get
cot(arctan(35))=1tan(tan1(35))=135=53\cot \left( \arctan \left( \dfrac{3}{5} \right) \right)=\dfrac{1}{\tan \left( {{\tan }^{-1}}\left( \dfrac{3}{5} \right) \right)}=\dfrac{1}{\dfrac{3}{5}}=\dfrac{5}{3}.