Solveeit Logo

Question

Question: How do you evaluate \(\cos \left( \text{arcsin}\left( \dfrac{3}{5} \right) \right)\)?...

How do you evaluate cos(arcsin(35))\cos \left( \text{arcsin}\left( \dfrac{3}{5} \right) \right)?

Explanation

Solution

In this problem we need to calculate the value of cos(arcsin(35))\cos \left( \text{arcsin}\left( \dfrac{3}{5} \right) \right). In the given function we can observe the arcsin\text{arcsin} function which is nothing but the inverse trigonometric function of sin\sin , mathematically it is sin1{{\sin }^{-1}} function. So, we will assume the sin1{{\sin }^{-1}} function to be a variable, say yy. Now we will apply the trigonometric function sin\sin on both sides of the equation and simplifies the equation to get the value of siny\sin y. After calculating the value of siny\sin y. We will use the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 to find the value of cosy\cos y which is nothing but our required value.

Complete step by step answer:
Given that, cos(arcsin(35))\cos \left( \text{arcsin}\left( \dfrac{3}{5} \right) \right).
In the above equation arcsin\text{arcsin} function is nothing but the sin1{{\sin }^{-1}} function. So, we are replacing it in the above equation, then we will get
cos(arcsin(35))=cos(sin1(35))\cos \left( \text{arcsin}\left( \dfrac{3}{5} \right) \right)=\cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)
Considering the function sin1{{\sin }^{-1}} individually, and assuming it to a variable say yy, then we will get
y=sin1(35).....(i)y={{\sin }^{-1}}\left( \dfrac{3}{5} \right).....\left( \text{i} \right)
Applying the trigonometric function sin\sin on both sides of the above equation, then we will get
sin(y)=sin(sin1(35))\Rightarrow \sin \left( y \right)=\sin \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)
We know that the value of sin(sin1(x))=sin1(sin(x))=x\sin \left( {{\sin }^{-1}}\left( x \right) \right)={{\sin }^{-1}}\left( \sin \left( x \right) \right)=x, then we will get
siny=35\Rightarrow \sin y=\dfrac{3}{5}
From the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1, we can write the value of cosy\cos y as
cosy=1sin2y\cos y=\sqrt{1-{{\sin }^{2}}y}
Substituting the value of siny=35\sin y=\dfrac{3}{5} in the above equation, then we will get
cosy=1(35)2 cosy=1925 \begin{aligned} & \cos y=\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \\\ & \Rightarrow \cos y=\sqrt{1-\dfrac{9}{25}} \\\ \end{aligned}
Simplifying the above equation by taking LCM, then we will have
cosy=25×1925 cosy=1625 \begin{aligned} & \Rightarrow \cos y=\sqrt{\dfrac{25\times 1-9}{25}} \\\ & \Rightarrow \cos y=\sqrt{\dfrac{16}{25}} \\\ \end{aligned}
We can write 16=4216={{4}^{2}}, 25=5225={{5}^{2}}. Now the above equation is modified as
cosy=(45)2 cosy=45 \begin{aligned} & \Rightarrow \cos y=\sqrt{{{\left( \dfrac{4}{5} \right)}^{2}}} \\\ & \Rightarrow \cos y=\dfrac{4}{5} \\\ \end{aligned}
From equation (i)\left( \text{i} \right), substituting the value of yy in the above equation, then we will get

cos(sin1(35))=45\therefore \cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)=\dfrac{4}{5}

Note: In this problem we have the used the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 after calculating the value of siny\sin y. We can also follow another method for finding the solution after calculating siny\sin y, which is by using the basic definition of trigonometric ratio sinx\sin x we will compare it with the value of siny\sin y. Now we will construct a right-angled triangle with the data we have from the above comparison and try to calculate the remaining data by using the Pythagoras theorem. After having all the data of the triangle, we can use definitions of basic trigonometric ratios and calculate whatever ratio we want.