Solveeit Logo

Question

Question: How do you evaluate \(\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \r...

How do you evaluate cos(π7)cos(4π7)cos(5π7)\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right)?

Explanation

Solution

If we want to solve the trigonometric identitycos(π7)cos(4π7)cos(5π7)\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right)then convert the given identity into simplified form. After we have converted the identity into the simplified form then divide 2sinπ72\sin \dfrac{\pi }{7}in the numerators and denominators to simplify the identity and reduce it.

Complete step by step solution:
We have our given identity that is cos(π7)cos(4π7)cos(5π7)......(1)\cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right)......\left( 1 \right).
We have to write the identity into the simplified form such that,
cos(π7)cos(4π7)cos(5π7) cosπ7cos4π7cos5π7......(2) \begin{aligned} & \Rightarrow \cos \left( \dfrac{\pi }{7} \right)\cdot \cos \left( \dfrac{4\cdot \pi }{7} \right)\cdot \cos \left( \dfrac{5\cdot \pi }{7} \right) \\\ & \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{4\pi }{7}\cdot \cos \dfrac{5\pi }{7}......\left( 2 \right) \\\ \end{aligned}
Now, we have the identity in simplified form in identity (2). The cos4π7\cos \dfrac{4\pi }{7}can be written ascos(π3π7)\cos \left( \pi -\dfrac{3\pi }{7} \right) and cos4π7\cos \dfrac{4\pi }{7} can be written ascos(π2π7)\cos \left( \pi -\dfrac{2\pi }{7} \right). The identities are converted in this form because it will be easier to solve.
cosπ7cos4π7cos5π7 cosπ7cos(π3π7)cos(π2π7).....(3) \begin{aligned} & \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{4\pi }{7}\cdot \cos \dfrac{5\pi }{7} \\\ & \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \left( \pi -\dfrac{3\pi }{7} \right)\cdot \cos \left( \pi -\dfrac{2\pi }{7} \right).....\left( 3 \right) \\\ \end{aligned}
Now, we have obtained the identity (3). We know that cos(πθ)\cos \left( \pi -\theta \right)is equal tocosθ\cos \theta . So apply it in the identity.
cosπ7cos(π3π7)cos(π2π7) cosπ7cos3π7cos2π7.....(4) \begin{aligned} & \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \left( \pi -\dfrac{3\pi }{7} \right)\cdot \cos \left( \pi -\dfrac{2\pi }{7} \right) \\\ & \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7}.....\left( 4 \right) \\\ \end{aligned}
We should rearrange the cosines in the increasing order of their angle in identity (4).
cosπ7cos3π7cos2π7 cosπ7cos2π7cos3π7.....(5) \begin{aligned} & \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{3\pi }{7}\cdot \cos \dfrac{2\pi }{7} \\\ & \Rightarrow \cos \dfrac{\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7}.....\left( 5 \right) \\\ \end{aligned}
Multiply 2sinπ72\sin \dfrac{\pi }{7} in the numerator and the denominator of the identity (5).
2sinπ72sinπ7(cosπ7cos2π7cos3π7) 12sinπ7((2sinπ7cosπ7)cos2π7cos3π7).....(6) \begin{aligned} & \Rightarrow \dfrac{2\sin \dfrac{\pi }{7}}{2\sin \dfrac{\pi }{7}}\left( \cos \dfrac{\pi }{7}\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \\\ & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \left( 2\sin \dfrac{\pi }{7}\cos \dfrac{\pi }{7} \right)\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right).....\left( 6 \right) \\\ \end{aligned}
Now, we know that the formula for2sinxcosx2\sin x\cos xwill besin2x\sin 2xso applying this formula in identity (6), we get:
12sinπ7((sin2π7)cos2π7cos3π7) 12sinπ7(12(2sin2π7cos2π7)cos3π7).....(7) \begin{aligned} & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \left( \sin \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{2\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \\\ & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right).....\left( 7 \right) \\\ \end{aligned}
Now, applying the same formula in the identity (7) as explained in the above steps, we get:
12sinπ7(12(2sin2π7cos2π7)cos3π7) 12sinπ7(12(sin2(2π)7)cos3π7) 12sinπ7(12(sin4π7)cos3π7) 12sinπ7(1212(2sin4π7cos3π7))......(8) \begin{aligned} & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( 2\sin \dfrac{2\pi }{7}\cdot \cos \dfrac{2\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\\ & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( \sin \dfrac{2\left( 2\pi \right)}{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\\ & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\left( \sin \dfrac{4\pi }{7} \right)\cdot \cos \dfrac{3\pi }{7} \right) \\\ & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \right)......\left( 8 \right) \\\ \end{aligned}

We know that cos3π7\cos \dfrac{3\pi }{7} can also be written as cos(π4π7)\cos \left( \pi -\dfrac{4\pi }{7} \right) and we also know that cos(πθ)\cos \left( \pi -\theta \right) is equal to cosθ\cos \theta . So applying this in the identity (8), we get:
12sinπ7(1212(2sin4π7cos3π7)) 12sinπ7(1212(2sin4π7cos(π4π7))) 12sinπ7(14(2sin4π7cos4π7)) 12sinπ7(14(sin8π7)).....(9) \begin{aligned} & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{3\pi }{7} \right) \right) \\\ & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \left( \pi -\dfrac{4\pi }{7} \right) \right) \right) \\\ & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( 2\sin \dfrac{4\pi }{7}\cdot \cos \dfrac{4\pi }{7} \right) \right) \\\ & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( \sin \dfrac{8\pi }{7} \right) \right).....\left( 9 \right) \\\ \end{aligned}
As we know, sin(8π7)\sin \left( \dfrac{8\pi }{7} \right) can also be written as sin(π+π7)\sin \left( \pi +\dfrac{\pi }{7} \right) and since sin(π+x)=sinx\sin \left( \pi +x \right)=\sin x, apply this in identity (9), we get:
12sinπ7(14(sin(π+π7))) 18sinπ7(sinπ7) 18 \begin{aligned} & \Rightarrow \dfrac{1}{2\sin \dfrac{\pi }{7}}\left( \dfrac{1}{4}\left( \sin \left( \pi +\dfrac{\pi }{7} \right) \right) \right) \\\ & \Rightarrow \dfrac{1}{8\sin \dfrac{\pi }{7}}\left( \sin \dfrac{\pi }{7} \right) \\\ & \Rightarrow \dfrac{1}{8} \\\ \end{aligned}
Now, we have obtained the solution to the problem i.e. 18\dfrac{1}{8}.

Note: We should always keep in mind that while solving a trigonometric problem, we should have learned all the formulas before solving the question. To solve trigonometry the main requirement is the formulas.