Solveeit Logo

Question

Question: How do you evaluate \(\cos \left( \dfrac{3\pi }{2}-x \right)\) ?...

How do you evaluate cos(3π2x)\cos \left( \dfrac{3\pi }{2}-x \right) ?

Explanation

Solution

Try to expand cos(3π2x)\cos \left( \dfrac{3\pi }{2}-x \right) and express it in the values that we already know the sin and cos. Then use the trigonometric identity cos(ab)=cosacosb+sinasinb\cos (a-b)=\cos a\cos b+\sin a\sin b . Here, a is 3π2\dfrac{3\pi }{2} and b is xx .

Complete step by step answer:
This type of question is mainly asked to check whether one remembers the formula cos(ab)=cosacosb+sinasinb\cos (a-b)=\cos a\cos b+\sin a\sin b and the values of sin and cos at 3π2\dfrac{3\pi }{2} .
We know, sin((4n+3)π2)\sin \left( \dfrac{(4n+3)\pi }{2} \right) is -1 for all n belonging to integers, cos((2n+1)π2)\cos \left( \dfrac{\left( 2n+1 \right)\pi }{2} \right) is 0 for all n belonging to integers.
Now, taking a as 3π2\dfrac{3\pi }{2} and b as xx and applying it in the formula of cos(ab)=cosacosb+sinasinb\cos (a-b)=\cos a\cos b+\sin a\sin b we have,
cos(3π2x)=cos(3π2)cosx+sin(3π2)sinx\Rightarrow \cos \left( \dfrac{3\pi }{2}-x \right)=\cos \left( \dfrac{3\pi }{2} \right)\cos x+\sin \left( \dfrac{3\pi }{2} \right)\sin x
sin(3π2)\sin \left( \dfrac{3\pi }{2} \right) is of the form sin((4n+3)π2)\sin \left( \dfrac{(4n+3)\pi }{2} \right) so equal to -1 andcos(3π2)\cos \left( \dfrac{3\pi }{2} \right) is of the form cos((2n+1)π2)\cos \left( \dfrac{\left( 2n+1 \right)\pi }{2} \right) so equal to 0.
cos(3π2)cosx+sin(3π2)sinx=0×cosx+(1)×sinx\Rightarrow \cos \left( \dfrac{3\pi }{2} \right)\cos x+\sin \left( \dfrac{3\pi }{2} \right)\sin x=0\times \cos x+\left( -1 \right)\times \sin x

Thus, cos(3π2x)=sinx\cos \left( \dfrac{3\pi }{2}-x \right)=-\sin x

Note: One must remember the basic values of sin and cos, it is very common to make mistakes in the signs for +1 and -1 when using the values of sin and cos. Another common mistake is to make sign mistakes in the cos(ab)\cos \left( a-b \right) formula.

Alternatively, one can do this in two steps. First, see from the graph that cos(πa)=cosa\cos \left( \pi -a \right)=-\cos a so cos(3π2x)=cos(π(π2+x))\Rightarrow \cos \left( \dfrac{3\pi }{2}-x \right)=\cos \left( \pi -\left( -\dfrac{\pi }{2}+x \right) \right) and then we use that cos(a)=cosa\cos \left( -a \right)=\cos a and cos(π2x)=sinx\cos \left( \dfrac{\pi }{2}-x \right)=\sin x . So, cos(π(π2+x))=cos(xπ2)=cos(π2x)=sin(x)\Rightarrow \cos \left( \pi -\left( -\dfrac{\pi }{2}+x \right) \right)=-\cos \left( x-\dfrac{\pi }{2} \right)=\cos \left( \dfrac{\pi }{2}-x \right)=\sin \left( x \right) . You can use the following to remember some of the above:
In the first quadrant, all the basic three trigonometric functions are positive. In the second quadrant, only sin is positive. In the third only tan is negative, and in the fourth only cos is negative.