Solveeit Logo

Question

Question: How do you evaluate \(\cos \left( \dfrac{2\pi }{9} \right)\)?...

How do you evaluate cos(2π9)\cos \left( \dfrac{2\pi }{9} \right)?

Explanation

Solution

We first assume a variable for cos(2π9)\cos \left( \dfrac{2\pi }{9} \right). We assume the concept of associative angle to find the value of cos(2π3)\cos \left( \dfrac{2\pi }{3} \right). Then using the formula of multiple angles of cos3α=4cos3α3cosα\cos 3\alpha =4{{\cos }^{3}}\alpha -3\cos \alpha , we get a cubic equation of cos(2π9)=x\cos \left( \dfrac{2\pi }{9} \right)=x. We put the equation in the graph and find the solution as the approximate value.

Complete step by step solution:
We have to evaluate cos(2π9)\cos \left( \dfrac{2\pi }{9} \right). Let us assume that cos(2π9)=x\cos \left( \dfrac{2\pi }{9} \right)=x.
Now we try to find the value of cos(2π3)\cos \left( \dfrac{2\pi }{3} \right). We use the concept of associative angle and get
cos(2π3)=cos(ππ3)=cos(π3)=12\cos \left( \dfrac{2\pi }{3} \right)=\cos \left( \pi -\dfrac{\pi }{3} \right)=-\cos \left( \dfrac{\pi }{3} \right)=-\dfrac{1}{2}.
Now we use the multiple angle formula where cos3α=4cos3α3cosα\cos 3\alpha =4{{\cos }^{3}}\alpha -3\cos \alpha .
We put the value of α=2π9\alpha =\dfrac{2\pi }{9} and get
cos(3×2π9)=4cos3(2π9)3cos(2π9) cos(2π3)=4[cos(2π9)]33[cos(2π9)] 4x33x=12 \begin{aligned} & \cos \left( 3\times \dfrac{2\pi }{9} \right)=4{{\cos }^{3}}\left( \dfrac{2\pi }{9} \right)-3\cos \left( \dfrac{2\pi }{9} \right) \\\ & \Rightarrow \cos \left( \dfrac{2\pi }{3} \right)=4{{\left[ \cos \left( \dfrac{2\pi }{9} \right) \right]}^{3}}-3\left[ \cos \left( \dfrac{2\pi }{9} \right) \right] \\\ & \Rightarrow 4{{x}^{3}}-3x=-\dfrac{1}{2} \\\ \end{aligned}
We now have to solve the cubic equation to find the value for cos(2π9)=x\cos \left( \dfrac{2\pi }{9} \right)=x.
The simplified form of the equation is 8x36x+1=08{{x}^{3}}-6x+1=0.
We now try to plot the equation in the graph

The value should be close to the value of cos(45)\cos \left( {{45}^{\circ }} \right) as cos(2π9)=cos(40)\cos \left( \dfrac{2\pi }{9} \right)=\cos \left( {{40}^{\circ }} \right). The graph intersects the line y=0y=0 at two positive points and the closet one to cos(40)\cos \left( {{40}^{\circ }} \right) is cos(2π9)=x=0.766\cos \left( \dfrac{2\pi }{9} \right)=x=0.766.
Therefore, the value of cos(2π9)\cos \left( \dfrac{2\pi }{9} \right) is 0.7660.766.

Note: We need to remember that the negative value of intersection of the equation in the graph is not valid as the quadrant for cos(2π9)=x\cos \left( \dfrac{2\pi }{9} \right)=x is first quadrant. Therefore, all the values of ratio cos are positive in the domain of [0,π2]\left[ 0,\dfrac{\pi }{2} \right].