Solveeit Logo

Question

Question: How do you evaluate \[\cos \left( { - 210^\circ } \right)\]....

How do you evaluate cos(210)\cos \left( { - 210^\circ } \right).

Explanation

Solution

Here, we will convert the given angle measures into acute angles using trigonometric identities. Then, we will express the obtained angle as a difference of two angles. We will then simplify the expression and substitute the value of the cosine of the obtained angle to find the required value.

Complete step-by-step answer:
First, we will simplify the given trigonometric ratios.
We can rewrite the given angle as a positive angle.
Rewriting the term of the expression, we get
cos(210)=cos(360+150)\cos \left( { - 210^\circ } \right) = \cos \left( { - 360^\circ + 150^\circ } \right)
The cosine of an angle 360+x - 360^\circ + x, is equal to the cosine of angle xx.
Therefore, we get
cos(210)=cos(150)\Rightarrow \cos \left( { - 210^\circ } \right) = \cos \left( {150^\circ } \right)
We can rewrite the angle as the sum or difference of a multiple of 9090^\circ or 180180^\circ , and an acute angle.
Rewriting the term of the expression, we get
cos(150)=cos(18030)\Rightarrow \cos \left( {150^\circ } \right) = \cos \left( {180^\circ - 30^\circ } \right)
The cosine of an angle 180x180^\circ - x, is equal to the negative of the cosine of angle xx, where xx is an acute angle.
Therefore, we get
cos(150)=cos(18030)=cos30\Rightarrow \cos \left( {150^\circ } \right) = \cos \left( {180^\circ - 30^\circ } \right) = - \cos 30^\circ
The cosine of an angle measuring 3030^\circ is equal to 32\dfrac{{\sqrt 3 }}{2}.
Substituting cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2} in the equation cos(150)=cos30\cos \left( {150^\circ } \right) = - \cos 30^\circ , we get
cos(150)=32\Rightarrow \cos \left( {150^\circ } \right) = - \dfrac{{\sqrt 3 }}{2}
Therefore, we get
cos(210)=cos(150)=32\Rightarrow \cos \left( { - 210^\circ } \right) = \cos \left( {150^\circ } \right) = - \dfrac{{\sqrt 3 }}{2}
Therefore, we get the value of the expression cos(210)\cos \left( { - 210^\circ } \right) as 32 - \dfrac{{\sqrt 3 }}{2}.

Note: A common mistake is to convert cos(150)=cos(18030)\cos \left( {150^\circ } \right) = \cos \left( {180^\circ - 30^\circ } \right) to sin30\sin 30^\circ . This is incorrect because 180180^\circ is an even multiple of 9090^\circ . If we rewrite cos150\cos 150^\circ as cos(90+60)\cos \left( {90^\circ + 60^\circ } \right), then only it will become sin60\sin 60^\circ , which is equal to 32\dfrac{{\sqrt 3 }}{2}. Here, cosine gets converted to sine because 9090^\circ is an odd multiple of 9090^\circ .
The cosine of any negative angle x - x is equal to the cosine of the positive angle xx.
Therefore, we can write the given expression as
cos(210)=cos210\cos \left( { - 210^\circ } \right) = \cos 210^\circ
Writing 210 as sum of 180 and 30, we get
cos210=cos(180+30)\cos 210^\circ = \cos \left( {180^\circ + 30^\circ } \right)
The cosine of an angle 180+x180^\circ + x, is equal to the negative of the cosine of angle xx, where xx is an acute angle.
Thus, we get
cos210=cos30=32\cos 210^\circ = - \cos 30^\circ = - \dfrac{{\sqrt 3 }}{2}