Solveeit Logo

Question

Question: How do you evaluate \[{\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{9\pi }}{8}} \right)} \right)\]?...

How do you evaluate cos1(cos(9π8)){\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{9\pi }}{8}} \right)} \right)?

Explanation

Solution

Hint : We know that cos1(cos(θ))=θ{\cos ^{ - 1}}\left( {\cos \left( \theta \right)} \right) = \theta for 0θπ0 \leqslant \theta \leqslant \pi . Here θ\theta is not in this range. So, we need to transform θ\theta so that we can apply the formula. We know that cosine function is positive in the first and fourth quadrant and negative in the second and third quadrant. Also, we will be using cos(θ)=cos(2π+θ)=cos(2πθ)\cos \left( \theta \right) = \cos \left( {2\pi + \theta } \right) = \cos \left( {2\pi - \theta } \right) to transform the given expression.

Complete step-by-step answer :
We need to evaluate cos1(cos(9π8)){\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{9\pi }}{8}} \right)} \right)
We know, cos1(cos(θ))=θ{\cos ^{ - 1}}\left( {\cos \left( \theta \right)} \right) = \theta for 0θπ(1)0 \leqslant \theta \leqslant \pi - - - - - - (1)
Here our θ=9π8\theta = \dfrac{{9\pi }}{8}
Let us first see whether this θ\theta lies in the range or not.
We have, θ=9π8\theta = \dfrac{{9\pi }}{8} which can be written as
θ=π+8π8\Rightarrow \theta = \dfrac{{\pi + 8\pi }}{8}
Now, splitting the denominator, we get
θ=π8+8π8\Rightarrow \theta = \dfrac{\pi }{8} + \dfrac{{8\pi }}{8}
Cancelling out the terms in numerator and denominator, we get
θ=π8+π\Rightarrow \theta = \dfrac{\pi }{8} + \pi
Hence, we see that θ>π\theta > \pi in this case.
So, we need to transform our angle.
We have cos1(cos(9π8)){\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{9\pi }}{8}} \right)} \right)
Writing the numerator of the angle as the difference of two terms, we can re-write this as:
cos1(cos(16π7π8))\Rightarrow {\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{16\pi - 7\pi }}{8}} \right)} \right)
Now, Splitting the denominator, we have
cos1(cos(16π87π8))\Rightarrow {\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{16\pi }}{8} - \dfrac{{7\pi }}{8}} \right)} \right)
Now, cancelling out the terms, we get
cos1(cos(2π7π8))\Rightarrow {\cos ^{ - 1}}\left( {\cos \left( {2\pi - \dfrac{{7\pi }}{8}} \right)} \right)
Now, using cos(2πθ)=cos(θ)\cos \left( {2\pi - \theta } \right) = \cos \left( \theta \right), we get
cos1(cos(7π8))\Rightarrow {\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{7\pi }}{8}} \right)} \right)
Hence, we get
cos1(cos(9π8))=cos1(cos(7π8))(2)\Rightarrow {\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{9\pi }}{8}} \right)} \right) = {\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{7\pi }}{8}} \right)} \right) - - - - - - (2)
Let us now check whether 7π8[0,π]\dfrac{{7\pi }}{8} \in \left[ {0,\pi } \right] or not.
We have 7π8\dfrac{{7\pi }}{8}, which can be written as
7π8=8ππ8\Rightarrow \dfrac{{7\pi }}{8} = \dfrac{{8\pi - \pi }}{8}
Splitting the denominator, we get
7π8=8π8π8\Rightarrow \dfrac{{7\pi }}{8} = \dfrac{{8\pi }}{8} - \dfrac{\pi }{8}
Cancelling out the terms, we get
7π8=ππ8\Rightarrow \dfrac{{7\pi }}{8} = \pi - \dfrac{\pi }{8}, which is less than π\pi .
Hence, 7π8[0,π]\dfrac{{7\pi }}{8} \in \left[ {0,\pi } \right]
So, from (1) and (2), we can say that
cos1(cos(9π8))=cos1(cos(7π8))=7π8\Rightarrow {\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{9\pi }}{8}} \right)} \right) = {\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{7\pi }}{8}} \right)} \right) = \dfrac{{7\pi }}{8} as 7π8[0,π]\dfrac{{7\pi }}{8} \in \left[ {0,\pi } \right].
Hence, cos1(cos(9π8))=7π8{\cos ^{ - 1}}\left( {\cos \left( {\dfrac{{9\pi }}{8}} \right)} \right) = \dfrac{{7\pi }}{8}
So, the correct answer is “7π8\dfrac{{7\pi }}{8}”.

Note : We cannot just directly write that cos1(cos(θ))=θ{\cos ^{ - 1}}\left( {\cos \left( \theta \right)} \right) = \theta but we need to check the conditions for which the result holds. We could have wrote 9π8\dfrac{{9\pi }}{8} as π+π8\pi + \dfrac{\pi }{8} but this angle lies in third quadrant and we know that cosine is negative in third quadrant. So, to apply this we will have to again make changes as cos1(x)=πcos1(x),x[1,1]{\cos ^{ - 1}}\left( { - x} \right) = \pi - {\cos ^{ - 1}}\left( x \right),x \in \left[ { - 1,1} \right].