Solveeit Logo

Question

Question: How do you do the taylor series expansion of \(\arctan \left( x \right)\And x\sin x\)?...

How do you do the taylor series expansion of arctan(x)&xsinx\arctan \left( x \right)\And x\sin x?

Explanation

Solution

To find the taylor series expansion of arctan(x)\arctan \left( x \right), we know that differentiation of arctan(x)\arctan \left( x \right) with respect to x is equal to 11+x2\dfrac{1}{1+{{x}^{2}}} and we also know the relation that 11c=1+c+c2+c3+......\dfrac{1}{1-c}=1+c+{{c}^{2}}+{{c}^{3}}+...... so in this expansion series if we put c as x2-{{x}^{2}} then we can find the taylor series of arctan(x)\arctan \left( x \right). And the Taylor series expansion of xsinxx\sin x is found by writing Taylor series expansion of sinx\sin x and then multiplying x with that series.

Complete step by step answer:
First of all, we are going to find the taylor series expansion of arctan(x)\arctan \left( x \right). We know that the derivative of arctan(x)\arctan \left( x \right) with respect to x is equal to:
d(arctanx)dx=11+x2\dfrac{d\left( \arctan x \right)}{dx}=\dfrac{1}{1+{{x}^{2}}} ………… Eq. (1)
We also know the relation which is equal to:
11c=1+c+c2+c3+......\dfrac{1}{1-c}=1+c+{{c}^{2}}+{{c}^{3}}+......
Now, if we substitute c as x2-{{x}^{2}} in the above then the above equation will look like:
11(x2)=1+(x2)1+(x2)2+(x2)3+...... 11(x2)=1x2+x4x6+..... \begin{aligned} & \Rightarrow \dfrac{1}{1-\left( -{{x}^{2}} \right)}=1+{{\left( -{{x}^{2}} \right)}^{1}}+{{\left( -{{x}^{2}} \right)}^{2}}+{{\left( -{{x}^{2}} \right)}^{3}}+...... \\\ & \Rightarrow \dfrac{1}{1-\left( -{{x}^{2}} \right)}=1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+..... \\\ \end{aligned}
We know that, negative sign multiplying with negative sign gives positive sign so L.H.S of the above expression will look like:
11+x2=1x2+x4x6+.....\Rightarrow \dfrac{1}{1+{{x}^{2}}}=1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+.....
Now, using the above relation in eq. (1) we get,
d(arctanx)dx=1x2+x4x6+.....\dfrac{d\left( \arctan x \right)}{dx}=1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+.....
Integrating with respect to x on both the sides we get,
d(arctanx)dxdx=(1x2+x4x6+......)dx arctanx=(1x2+x4x6+......)dx \begin{aligned} & \Rightarrow \int{\dfrac{d\left( \arctan x \right)}{dx}}dx=\int{\left( 1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+...... \right)dx} \\\ & \Rightarrow \arctan x=\int{\left( 1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+...... \right)dx} \\\ \end{aligned}
We know the integration of xn{{x}^{n}} with respect to x where n can be any whole number is equal to:
xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}
Using the above integration in the R.H.S of the above equation which is written just above this integration we get,
arctanx=xx2+12+1+x4+14+1x6+16+1+....... arctanx=xx33+x55x77+...... \begin{aligned} & \Rightarrow \arctan x=x-\dfrac{{{x}^{2+1}}}{2+1}+\dfrac{{{x}^{4+1}}}{4+1}-\dfrac{{{x}^{6+1}}}{6+1}+....... \\\ & \Rightarrow \arctan x=x-\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}-\dfrac{{{x}^{7}}}{7}+...... \\\ \end{aligned}
Hence, we have written the taylor series expansion of arctanx\arctan x as follows:
arctanx=xx33+x55x77+......\arctan x=x-\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}-\dfrac{{{x}^{7}}}{7}+......
Now, we are going to find the taylor series expansion of xsinxx\sin x. For that, we know the taylor series expansion of sinx\sin x is given as:
sinx=xx33!+x55!x77!+......\sin x=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}-\dfrac{{{x}^{7}}}{7!}+......
Now, multiplying x on both the sides of the above equation we get,
xsinx=x(xx33!+x55!x77!+......)x\sin x=x\left( x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}-\dfrac{{{x}^{7}}}{7!}+...... \right)
Multiplying x with each term of the bracket on the R.H.S of the above equation we get,
xsinx=x.xx33!.x+x55!.xx77!.x+......x\sin x=x.x-\dfrac{{{x}^{3}}}{3!}.x+\dfrac{{{x}^{5}}}{5!}.x-\dfrac{{{x}^{7}}}{7!}.x+......
We know that when the base is same and the two bases with different exponents are multiplied then the result of such multiplication is the same base with the addition of the exponents so in the above the base “x” is same and two x with different powers are multiplied then we get,
xsinx=x1+1x3+13!+x5+15!x7+17!+...... xsinx=x2x43!+x65!x87!+...... \begin{aligned} & \Rightarrow x\sin x={{x}^{1+1}}-\dfrac{{{x}^{3+1}}}{3!}+\dfrac{{{x}^{5+1}}}{5!}-\dfrac{{{x}^{7+1}}}{7!}+...... \\\ & \Rightarrow x\sin x={{x}^{2}}-\dfrac{{{x}^{4}}}{3!}+\dfrac{{{x}^{6}}}{5!}-\dfrac{{{x}^{8}}}{7!}+...... \\\ \end{aligned}
Hence, we have found the taylor series expansion for xsinxx\sin x as:
xsinx=x2x43!+x65!x87!+......x\sin x={{x}^{2}}-\dfrac{{{x}^{4}}}{3!}+\dfrac{{{x}^{6}}}{5!}-\dfrac{{{x}^{8}}}{7!}+......

Note:
The mistake that could be possible in the above solution is that while writing the taylor series expansion of sinx\sin x which is given as:
sinx=xx33!+x55!x77!+......\sin x=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}-\dfrac{{{x}^{7}}}{7!}+......
You might forget to write the factorial sign after 3, 5 and 7 so make sure you have written the factorial signs after the numbers 3, 5 and 7.