Solveeit Logo

Question

Question: How do you divide \[\dfrac{{1 + 7i}}{{9 - 5i}}\] in trigonometric form?...

How do you divide 1+7i95i\dfrac{{1 + 7i}}{{9 - 5i}} in trigonometric form?

Explanation

Solution

Hint : In order to solve the question given above, you need to have knowledge about complex numbers. It is defined as a number that can be expressed in the form a+bia + bi , where aa and bb are both real numbers whereas ii is an imaginary unit. Also, you need to know the properties and formulas used in trigonometry.

Formula used:
To solve the above question, you need to remember the trigonometric formulas:
cos(ab)=cosacosb+sinasinb\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b .
sin(ab)=sinacosbcosasinb\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b .

Complete step by step solution:
We have to divide 1+7i95i\dfrac{{1 + 7i}}{{9 - 5i}} in trigonometric form.
First, let us write the two complex numbers in polar coordinates. This gives us:
z1=r1(cosα+isinα){z_1} = {r_1}\left( {\cos \alpha + i\sin \alpha } \right) and z2=r2(cosβ+isinβ){z_2} = {r_2}\left( {\cos \beta + i\sin \beta } \right) .
Let us take the two complex numbers as a1+b1i{a_1} + {b_1}i and a2+b2i{a_2} + {b_2}i .
Also, r1=a12+b12{r_1} = \sqrt {{a_1}^2 + {b_1}^2} ; r2=a22+b22{r_2} = \sqrt {{a_2}^2 + {b_2}^2} ; α=tan1(b1a1)\alpha = {\tan ^{ - 1}}\left( {\dfrac{{{b_1}}}{{{a_1}}}} \right) and β=tan1(b2a2)\beta = {\tan ^{ - 1}}\left( {\dfrac{{{b_2}}}{{{a_2}}}} \right) .
On dividing, we get:
[r1r2][cosα+isinαcosβ+isinβ]\left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\dfrac{{\cos \alpha + i\sin \alpha }}{{\cos \beta + i\sin \beta }}} \right] .
On solving,
[r1r2][cosα+isinαcosβ+isinβ×cosβisinβcosβisinβ]\left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\dfrac{{\cos \alpha + i\sin \alpha }}{{\cos \beta + i\sin \beta }} \times \dfrac{{\cos \beta - i\sin \beta }}{{\cos \beta - i\sin \beta }}} \right]
[r1r2][(cosαcosβ+sinαsinβ)+i(sinαcosβcosαsinβ)cos2β+sin2β]\Rightarrow \left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\dfrac{{\left( {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right) + i\left( {\sin \alpha \cos \beta - \cos \alpha \sin \beta } \right)}}{{{{\cos }^2}\beta + {{\sin }^2}\beta }}} \right] .
Now solve the above brackets using the AB formulas of trigonometry where: cos(ab)=cosacosb+sinasinb\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b and sin(ab)=sinacosbcosasinb\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b .
So, the above equation becomes:
[r1r2][cos(αβ)+isin(αβ)]\left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\cos \left( {\alpha - \beta } \right) + i\sin \left( {\alpha - \beta } \right)} \right] .
Now, z1z2\dfrac{{{z_1}}}{{{z_2}}} is given by (r1r2,(αβ))\left( {\dfrac{{{r_1}}}{{{r_2}}},\left( {\alpha - \beta } \right)} \right) . Therefore, to divide complex numbers by z1{z_1} and z2{z_2} .
Now, take new angle as (αβ)\left( {\alpha - \beta } \right) and ratio r1r2\dfrac{{{r_1}}}{{{r_2}}} of the modulus of two numbers.
In the above question, 1+7i1 + 7i can be written as r1(cosα+isinα){r_1}\left( {\cos \alpha + i\sin \alpha } \right) where
r1=12+72{r_1} = \sqrt {{1^2} + {7^2}}
=50= \sqrt {50} .
And α=tan17\alpha = {\tan ^{ - 1}}7 .
And for 95i9 - 5i can be written as r2(cosβ+isinβ){r_2}\left( {\cos \beta + i\sin \beta } \right) where
r2=92+52{r_2} = \sqrt {{9^2} + {5^2}}
=106= \sqrt {106} .
And β=tan1(59)\beta = {\tan ^{ - 1}}\left( {\dfrac{{ - 5}}{9}} \right) .
Now, z1z2=50106(cos(αβ)+isin(αβ))\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{\sqrt {50} }}{{\sqrt {106} }}\left( {\cos \left( {\alpha - \beta } \right) + i\sin \left( {\alpha - \beta } \right)} \right) .
So,
tan(αβ)=tanαtanβ1+tanαtanβ\tan \left( {\alpha - \beta } \right) = \dfrac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \tan \beta }}
=7(59)1+7(59)= \dfrac{{7 - \left( {\dfrac{{ - 5}}{9}} \right)}}{{1 + 7\left( {\dfrac{{ - 5}}{9}} \right)}}
=689269= \dfrac{{\dfrac{{68}}{9}}}{{\dfrac{{ - 26}}{9}}} .
Now, we get:
tan(αβ)=3413\tan \left( {\alpha - \beta } \right) = - \dfrac{{34}}{{13}} .
Hence, 1+7i95i=50106(cosθ+isinθ)\dfrac{{1 + 7i}}{{9 - 5i}} = \dfrac{{\sqrt {50} }}{{\sqrt {106} }}\left( {\cos \theta + i\sin \theta } \right) , where θ=tan1(3413)\theta = {\tan ^{ - 1}}\left( { - \dfrac{{34}}{{13}}} \right) .

Note : While solving questions similar to the one given above, you need to remember the concept of complex numbers. You need to remember the formulas used in trigonometry. For example: in the above question we have used cos(ab)=cosacosb+sinasinb\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b and sin(ab)=sinacosbcosasinb\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b .