Solveeit Logo

Question

Question: How do you differentiate \( y={{\sec }^{2}}x+{{\tan }^{2}}x \) ? \[\]...

How do you differentiate y=sec2x+tan2xy={{\sec }^{2}}x+{{\tan }^{2}}x ? $$$$

Explanation

Solution

We recall the sum rule of differentiation ddx(f(x)+g(x))=ddxf(x)+ddxg(x)\dfrac{d}{dx}\left( f\left( x \right)+g\left( x \right) \right)=\dfrac{d}{dx}f\left( x \right)+\dfrac{d}{dx}g\left( x \right) .We recall the chain rule of differentiation dwdx=dwdu×dudx\dfrac{dw}{dx}=\dfrac{dw}{du}\times \dfrac{du}{dx} where we first take w=gof=sec2xw=gof={{\sec }^{2}}x and u=f(x)=secxu=f\left( x \right)=\sec x . We first find u=f(x)u=f\left( x \right) as the function inside the bracket and w=tan2xw={{\tan }^{2}}x as the composite function and then differentiate using chain rule and the known differentiation ddx(secx)=secxtanx\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x . We similarly proceed for y=gof=tan2x,v=tanxy=gof={{\tan }^{2}}x,v=\tan x using the known differentiation ddxtanx=sec2x\dfrac{d}{dx}\tan x={{\sec }^{2}}x .$$$$

Complete step-by-step answer:
We know that If f(x),g(x)f\left( x \right),g\left( x \right) are two real valued functions the differentiation of their sum is given by the sum rule as
ddx(f(x)+g(x))=ddxf(x)+ddxg(x)\dfrac{d}{dx}\left( f\left( x \right)+g\left( x \right) \right)=\dfrac{d}{dx}f\left( x \right)+\dfrac{d}{dx}g\left( x \right)

We know that if the functions f(x),g(x)f\left( x \right),g\left( x \right) are well defined real valued function within sets f:ABf:A\to B and g:BCg:B\to C then the composite function from A to C is defend as g(f(x))g\left( f\left( x \right) \right) within sets gof:ACgof:A\to C . If we denote g(f(x))=yg\left( f\left( x \right) \right)=y and f(x)=uf\left( x \right)=u then we can differentiate the composite function using chain rule as
ddxg(f(x))=dydx=dydu×dudx\dfrac{d}{dx}g\left( f\left( x \right) \right)=\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}
We are given the following function to differentiate
y=sec2x+tan2xy={{\sec }^{2}}x+{{\tan }^{2}}x
We differentiate both sides of the above equation using sum rule to have;

& \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{\sec }^{2}}x+{{\tan }^{2}}x \right) \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}{{\sec }^{2}}x+\dfrac{d}{dx}{{\tan }^{2}}x \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}{{\left( \sec x \right)}^{2}}+\dfrac{d}{dx}{{\left( \tan x \right)}^{2}}......\left( 1 \right) \\\ \end{aligned}$$ We are asked to differentiate the function $ {{\sec }^{2}}x={{\left( \sec x \right)}^{2}} $ . We see that it is a composite function made by functions polynomial function that is $ {{x}^{2}} $ and trigonometric function that is $ \sec x $ . Let us assign the function within the bracket as $ f\left( x \right)=\sec x=u $ and $ g\left( x \right)={{x}^{2}} $ . So we have $ g\left( f\left( x \right) \right)=g\left( \sec x \right)={{\left( \sec x \right)}^{2}}=w $ . We differentiate using chain rule to have; $$\begin{aligned} & \dfrac{dw}{dx}=\dfrac{dw}{du}\times \dfrac{du}{dx} \\\ & \Rightarrow \dfrac{d}{dx}w=\dfrac{d}{du}w\times \dfrac{d}{dx}u \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \sec x \right)}^{2}}=\dfrac{d}{d\left( \sec x \right)}{{\left( \sec x \right)}^{n}}\times \dfrac{d}{dx}\left( \sec x \right) \\\ \end{aligned}$$ We know that from standard differentiation of polynomial function as $ \dfrac{d}{dt}{{t}^{n}}=n{{t}^{n-1}} $ for $ t=\sec x $ and standard differentiation of $ \sec x $ that is $ \dfrac{d}{dx}\sec x=\sec x\tan x $ to have; $$\begin{aligned} & \Rightarrow \dfrac{d}{dx}{{\left( \sec x \right)}^{2}}={{\left( \sec x \right)}^{2-1}}\times \sec x\tan x \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \sec x \right)}^{2}}=2\sec x\times \sec x\tan x \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \sec x \right)}^{2}}=2{{\sec }^{2}}x\tan x.....\left( 2 \right) \\\ \end{aligned}$$ We similarly differentiate $ {{\tan }^{2}}x $ by taking $ v=\tan x $ . We take $ f\left( x \right)=\tan x=v,g\left( x \right)={{x}^{2}} $ to have $ gof\left( x \right)={{\left( \tan x \right)}^{2}}=w $ . We differentiate using chain rule to have; $$\begin{aligned} & \dfrac{dw}{dx}=\dfrac{dw}{dv}\times \dfrac{dv}{dx} \\\ & \Rightarrow \dfrac{d}{dx}w=\dfrac{d}{dv}w\times \dfrac{d}{dx}v \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \tan x \right)}^{2}}=\dfrac{d}{d\left( \tan x \right)}{{\left( \tan x \right)}^{2}}\times \dfrac{d}{dx}\left( \tan x \right) \\\ \end{aligned}$$ We know that from standard differentiation of polynomial function $ \dfrac{d}{dt}{{t}^{n}}=n{{t}^{n-1}} $ for $ t=\tan x $ and standard differentiation of $ \tan x $ that is $ \dfrac{d}{dx}\tan x={{\sec }^{2}}x $ to have; $$\begin{aligned} & \Rightarrow \dfrac{d}{dx}{{\left( \tan x \right)}^{2}}={{\left( \tan x \right)}^{2-1}}\times {{\sec }^{2}}x \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \tan x \right)}^{2}}=2\tan x\times {{\sec }^{2}}x \\\ & \Rightarrow \dfrac{d}{dx}{{\left( \tan x \right)}^{2}}=2{{\sec }^{2}}x\tan x.......\left( 3 \right) \\\ \end{aligned}$$ We put (2) and (3) in (1) to have the result as $$\begin{aligned} & \dfrac{dy}{dx}=2{{\sec }^{2}}x\tan x+2{{\sec }^{2}}x\tan x \\\ & \Rightarrow \dfrac{dy}{dx}=4{{\sec }^{2}}x\tan x \\\ \end{aligned}$$ **Note:** We note that the given two trigonometric functions $ \sec x,\tan x $ are not defined for $ x=\left( 2n+1 \right)\dfrac{\pi }{2} $ . So we cannot get derivative of the given $ y={{\sec }^{2}}x+{{\tan }^{2}}x $ function at $ x=\left( 2n+1 \right)\dfrac{\pi }{2} $ . We should not try to convert $ {{\sec }^{2}}x,{{\tan }^{2}}x $ in to sine and cosine to differentiate because that will be long and difficult. If we are given $ y={{\sec }^{2}}x-{{\tan }^{2}}x $ it derivative will be zero since $ {{\sec }^{2}}x-{{\tan }^{2}}x=1 $