Solveeit Logo

Question

Question: How do you differentiate \(y={{\left( \sin x \right)}^{\ln x}}?\)...

How do you differentiate y=(sinx)lnx?y={{\left( \sin x \right)}^{\ln x}}?

Explanation

Solution

(1) Find the derivative of y'y' firstly then find the derivative of (sinx)lnx{{\left( \sin x \right)}^{\ln x}}
(2) Try to shift lnx\ln x exponent and solve it by taking.
Natural log\log on both sides using properties of logarithms.
E.g. lnxa=aln(x)\ln {{x}^{a}}=a\ln \left( x \right)

Complete step by step solution: We know that, y=(sinx)lnxy={{\left( \sin x \right)}^{\ln x}}
So, here we can first find the derivative of y'y' than after that derivative of (sinx)lnx{{\left( \sin x \right)}^{\ln x}}
y=(sinx)lnxy={{\left( \sin x \right)}^{\ln x}}
Taking log\log on both sides by using the property of logarithm,
Therefore,
lny=ln(sinx)lnx\ln y=\ln {{\left( \sin x \right)}^{\ln x}}
lny=lnx.ln(sinx)...(i)\ln y=\ln x.\ln \left( \sin x \right)...(i)
Here (sinx)lnx{{\left( \sin x \right)}^{\ln x}} converted into lnx.(sinx)\ln x.\left( \sin x \right) by the property of logarithm.
Now,
We will derive both sides, for the left side we will have to derivate of lny=1y\ln y=\dfrac{1}{y}
But we can’t simply say that derivative of yy is 11 (using change rule) Rather we say that it is dydx\dfrac{dy}{dx}
So, the left hand side of equation will be.
1y.dydx\dfrac{1}{y}.\dfrac{dy}{dx}
Now, taking derivative on right side of the equation (i)(i)
Using the product and chain rule we will get,
1y.dydx=(ln(sinx).12)+(lnx.1sinx.cosx)\dfrac{1}{y}.\dfrac{dy}{dx}=\left( \ln \left( \sin x \right).\dfrac{1}{2} \right)+\left( \ln x.\dfrac{1}{\sin x}.\cos x \right)
1y.dydx=ln(sinx)x+lnx.cosxsinx\dfrac{1}{y}.\dfrac{dy}{dx}=\dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x}
Multiplying above equation on both sides by y'y'
Therefore,
1y.ydydx=y(ln(sinx)x+lnx.cosxsinx)\dfrac{1}{y}.y\dfrac{dy}{dx}=y\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x} \right)
Here, yy in multiplying and division get canceled.
dydx=y(ln(sinx)x+lncosxsinx)\dfrac{dy}{dx}=y\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln \cos x}{\sin x} \right)
Hence, to get our answer in terms of x'x' replace y'y' by sinxlnx\sin {{x}^{\ln x}} from the original function.
Our final answer will be
dydx=sin(x)lnx(ln(sinx)x+lnx.cosxsinx)\dfrac{dy}{dx}=\sin {{\left( x \right)}^{\ln x}}\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x} \right)

Additional Information:
(1) The chain rule tells us how to find the derivative of a composite function.
In this way we can apply chain rule.
ddx[f(g(x))]=f(g(x))g(x)\dfrac{d}{dx}\left[ f(g(x)) \right]=f'\left( g\left( x \right) \right)g'\left( x \right)
For example: cos(x2)\cos \left( {{x}^{2}} \right)
f(x)=cos(x)f(x)=\cos \left( x \right) and g(x)=x2g\left( x \right)={{x}^{2}} then cos(x2)=f(g(x))\cos \left( {{x}^{2}} \right)=f\left( g\left( x \right) \right)
(2) Derivative of sinx\sin x is cosx\cos x but here for the exponent component we have to use the property of logarithm.

Note:
(1) Firstly find the derivative of y'y' and then of the (sinx)lnx{{\left( \sin x \right)}^{\ln x}}
(2) Shift lnx\ln x exponent by using the property of logarithm.
(3) Use only product and chain rules.
(4) At last replace yy by sinxlnx\sin {{x}^{\ln x}} from the original function.