Solveeit Logo

Question

Question: How do you differentiate \(y=2\cos ecx+5\cos x\)...

How do you differentiate y=2cosecx+5cosxy=2\cos ecx+5\cos x

Explanation

Solution

The derivative of the above trigonometric function can be found out in 3 steps. In step1, we find the derivative of the cosine function. In step2, we find the derivative of a cosecant function. In step3, we substitute the derivatives of cosine and cosecant in the function y to get the derivative of the given function.

Complete step-by-step solution:
In the above question, we are supposed to find the derivative of the y. The derivative of the trigonometric function y can be found by using three steps.
Step1:
The derivative of the cosine function:
The derivative of the cosine function is the negative of the sine function.
The derivative of the cosine function is given by,
ddx(cosx)=(sinx)\Rightarrow \dfrac{d}{dx}\left( \cos x \right)=\left( -\sin x \right)
Step2:
The derivative of the cosecant function:
From trigonometry,
We know thatcosecx=1sinx\cos ecx=\dfrac{1}{\sin x}
ddx(cosecx)=ddx(1sinx)\Rightarrow \dfrac{d}{dx}\left( \cos ecx \right)=\dfrac{d}{dx}\left( \dfrac{1}{\sin x} \right)
According to the formula of derivatives,
ddx(uv)=(ddx(u)×vu×ddx(v))(v)2\Rightarrow \dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{\left( \dfrac{d}{dx}\left( u \right)\times v-u\times \dfrac{d}{dx}\left( v \right) \right)}{{{\left( v \right)}^{2}}}
Where u and v are any differentiable functions.
Following the same,
We get
ddx(cosecx)=(ddx(1)×sinx1×ddx(sinx))(sinx)2\Rightarrow \dfrac{d}{dx}\left( \cos ecx \right)=\dfrac{\left( \dfrac{d}{dx}\left( 1 \right)\times \sin x-1\times \dfrac{d}{dx}\left( \sin x \right) \right)}{{{\left( \sin x \right)}^{2}}}
The derivative of any constant results in a zero.
ddx(1)=0\dfrac{d}{dx}\left( 1 \right)=0
The derivative of the sine function is the cosine function.
ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x
Upon substituting we get,
ddx(cosecx)=(0×sinx1×cosx)(sinx)2\Rightarrow \dfrac{d}{dx}\left( \cos ecx \right)=\dfrac{\left( 0\times \sin x-1\times \cos x \right)}{{{\left( \sin x \right)}^{2}}}
Now evaluate further.
ddx(cosecx)=(1×cosx)(sinx)2\Rightarrow \dfrac{d}{dx}\left( \cos ecx \right)=-\dfrac{\left( 1\times \cos x \right)}{{{\left( \sin x \right)}^{2}}}
The above expression can be written as
ddx(cosecx)=(cosx)sinx×1sinx\Rightarrow \dfrac{d}{dx}\left( \cos ecx \right)=\dfrac{\left( -\cos x \right)}{\sin x}\times \dfrac{1}{\sin x}
The cotangent function in trigonometry is the ratio of cosine and sine functions.
cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot x
The inverse of the sine function is the cosecant function.
1sinx=cosecx\dfrac{1}{\sin x}=\cos ecx
Substituting the same,
ddx(cosecx)=cotx×cosecx\Rightarrow \dfrac{d}{dx}\left( \cos ecx \right)=-\cot x\times \cos ecx
Step3:
We need to find out the derivative of the function y.
The derivative of the function y is denoted bydydx\dfrac{dy}{dx}.
y=2cosecx+5cosx\Rightarrow y=2\cos ecx+5\cos x
Differentiating on both sides,
dydx=ddx(2cosecx+5cosx)\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( 2\cos ecx+5\cos x \right)
dydx=ddx(2cosecx)+ddx(5cosx)\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( 2\cos ecx \right)+\dfrac{d}{dx}\left( 5\cos x \right)
Now bring the constant outside.
dydx=2×ddx(cosecx)+5×ddx(cosx)\Rightarrow \dfrac{dy}{dx}=2\times \dfrac{d}{dx}\left( \cos ecx \right)+5\times \dfrac{d}{dx}\left( \cos x \right)
Substituting the derivatives of the trigonometric functions from step 1 and step 2,
dydx=2×((cotx)×cosecx)+5×(sinx)\Rightarrow \dfrac{dy}{dx}=2\times \left( \left( -\cot x \right)\times \cos ecx \right)+5\times \left( -\sin x \right)
dydx=2cotxcosecx5sinx\Rightarrow \dfrac{dy}{dx}=-2\cot x\cos ecx-5\sin x
Hence, the derivative of the given function yy is 2cotxcosecx5sinx-2\cot x\cos ecx-5\sin x.

Note: The derivatives of all trigonometric functions should be known to solve this question easily. The basic relations between the trigonometric functions likecotx\cot x in terms of sinx\sin xand cosx\cos x is to be remembered to derive the derivative of the given function.