Solveeit Logo

Question

Question: How do you differentiate \({{x}^{\sin \left( x \right)}}\)?...

How do you differentiate xsin(x){{x}^{\sin \left( x \right)}}?

Explanation

Solution

In this problem we have to find the differentiation value of xsin(x){{x}^{\sin \left( x \right)}}. We assume the given expression as y=xsin(x)y={{x}^{\sin \left( x \right)}}. Now we will take natural logarithms on both sides of the above equation. We will simplify the logarithmic expression by using the logarithmic formulas. Now we will differentiate to both sides of the equation with respect to the x''x''. Now we will implicit differentiation on the LHS. We will use the product rule in RHS. The product rule isddx(uv)=uddx(v)+vddx(u)\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}\left( v \right)+v\dfrac{d}{dx}\left( u \right). Now we will simplify the expression then we will get the result.

Formulas Used:
1.log(x)y=ylogx\log {{\left( x \right)}^{y}}=y\log x
2.ddx(logy)=1ydydx\dfrac{d}{dx}(\log y)=\dfrac{1}{y}\dfrac{dy}{dx}
3.ddx(logx)=1x\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}
4.We use product rule of differentiation
ddx(uv)=uddx(v)+vddx(u)\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}\left( v \right)+v\dfrac{d}{dx}\left( u \right)
5.ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x.

Complete step by step solution:
Given that, xsinx{{x}^{\sin x}}
Now we will write the above expression yy is equal to xsinx{{x}^{\sin x}},then
y=y= xsinx{{x}^{\sin x}}
Now we will take natural logarithms to both sides, then,
logy=log(x)sinx\log y=\log {{\left( x \right)}^{\sin x}}
Using the formula log(x)y=ylogx\log {{\left( x \right)}^{y}}=y\log x in the above equation, then we will get
logy=sinxlogx\log y=\sin x\log x
Now differentiate the above equation with respect xx
ddx(logy)=ddx(sinxlogx)\dfrac{d}{dx}\left( \log y \right)=\dfrac{d}{dx}\left( \sin x\log x \right)
Using the formula ddx(logy)=1ydydx\dfrac{d}{dx}(\log y)=\dfrac{1}{y}\dfrac{dy}{dx} in the above equation, then we will get
1ydydx=dydx(sinxlogx)\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{dy}{dx}\left( \sin x\log x \right)
Using the product rule of differentiation ddx(uv)=uddx(v)+vddx(u)\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}\left( v \right)+v\dfrac{d}{dx}\left( u \right) in the above equation, then we will get
1ydydx=logxddxsinx+sinxddxlogx\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\log x\dfrac{d}{dx}\sin x+\sin x\dfrac{d}{dx}\log x
We know that ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x,then
1ydydx=cosxlogx+sinxddxlogx\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\cos x\log x+\sin x\dfrac{d}{dx}\log x
We know that ddx(logx)=1x\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x},then
1ydydx=cosxlogx+sinx1x\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\cos x\log x+\sin x\dfrac{1}{x}
Now we will simplify the above equation, then
1ydydx=cosxlogx+sinxx\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\cos x\log x+\dfrac{\sin x}{x}
dydx=y(cosxlogx+sinxx)\Rightarrow \dfrac{dy}{dx}=y\left( \cos x\log x+\dfrac{\sin x}{x} \right)
We know that y=y= xsinx{{x}^{\sin x}} then substitute in the above equation, then we will get
dydx=xsinx(cosxlogx+sinxx)\Rightarrow \dfrac{dy}{dx}={{x}^{\sin x}}\left( \cos x\log x+\dfrac{\sin x}{x} \right)
Hence the differentiation value if

dydx=(xsinx)(cosxlogx+sinxx)\therefore \dfrac{dy}{dx}=\left( {{x}^{\sin x}} \right)\left( \cos x\log x+\dfrac{\sin x}{x} \right)

Note:
This is similar to the product rule of differentiation. Basically, in product rule what we do is, we treat uuconstant and differentiation vv and then take vv constant and differentiate uuand add them together. similarly if we take this function ,it is of the form uv{{u}^{v}}.so when we take uuas constant .it become a differentiation of form ax{{a}^{x}}(which will give axloga{{a}^{x}}\log a) (also don’t forget to differentiate sinx\sin x) and then when we take vv as a constant, it will be of the form xn{{x}^{n}}(which will give nx(n1)nx\left( n-1 \right)).