Solveeit Logo

Question

Question: How do you differentiate \({x^{\ln x}}\)?...

How do you differentiate xlnx{x^{\ln x}}?

Explanation

Solution

First express the given function in the form of y=f(x)y = f\left( x \right). Then take logarithm on both sides of the equation to simplify it so as to make differentiation easier. Then differentiate both sides with respect to xx and make the substitution wherever required. Apply the chain rule of differentiation which is dydx=dydt×dtdx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} to differentiate the composite functions.

Complete step by step answer:
According to the question, we have to show how to differentiate the function xlnx{x^{\ln x}}.
Let this function be denoted as yy. Then we have:
y=xlnx .....(1)\Rightarrow y = {x^{\ln x}}{\text{ }}.....{\text{(1)}}
If we take natural logarithm on both sides, we’ll get:
lny=lnxlnx\Rightarrow \ln y = \ln {x^{\ln x}}
We know the logarithmic formula lnab=blna\ln {a^b} = b\ln a. On applying this formula, we have:
lny=lnxlnx\Rightarrow \ln y = \ln x\ln x
This can be written as:
lny=(lnx)2\Rightarrow \ln y = {\left( {\ln x} \right)^2}
Now if we put lnx=t\ln x = t, we’ll get:
lny=t2\Rightarrow \ln y = {t^2}
Differentiating this equation both sides with respect to xx, we’ll get:
ddx(lny)=ddx(t2)\Rightarrow \dfrac{d}{{dx}}\left( {\ln y} \right) = \dfrac{d}{{dx}}\left( {{t^2}} \right)
We know the chain rule of differentiation as shown below:
dydx=dydt×dtdx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}}
Applying this rule for our function, we’ll get:
ddx(lny)=ddt(t2)dtdx\Rightarrow \dfrac{d}{{dx}}\left( {\ln y} \right) = \dfrac{d}{{dt}}\left( {{t^2}} \right)\dfrac{{dt}}{{dx}}
We know the formulas of differentiation ddxlnx=1x\dfrac{d}{{dx}}\ln x = \dfrac{1}{x} and ddxx2=2x\dfrac{d}{{dx}}{x^2} = 2x. Applying them, we’ll get:
1ydydx=2tdtdx\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2t\dfrac{{dt}}{{dx}}
Putting back the value of tt, we’ll get:
1ydydx=2lnxddx(lnx)\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2\ln x\dfrac{d}{{dx}}\left( {\ln x} \right)
Again applying the formula of differentiation, we’ll get:

1ydydx=2lnx×1x dydx=2ylnxx  \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2\ln x \times \dfrac{1}{x} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2y\ln x}}{x} \\\

Putting back the value of yy from equation (1), we’ll get:
ddx(xlnx)=2xlnxlnxx\Rightarrow \dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right) = \dfrac{{2{x^{\ln x}}\ln x}}{x}
This is the required differentiation.

Note: Whenever we have to differentiate a composite function, we always use chain rule of differentiation after substitution. This makes a complex looking function simple from where we can differentiate step by step. For example, consider the given composite function:
y=f(g(x))\Rightarrow y = f\left( {g\left( x \right)} \right)
To differentiate this function, we’ll substitute g(x)=tg\left( x \right) = t, we will have:
y=f(t)\Rightarrow y = f\left( t \right)
Now we can apply chain rule of differentiation as shown below:
dydx=ddxf(t)×dtdx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}f\left( t \right) \times \dfrac{{dt}}{{dx}}
Now this differentiation is simple and we can do it step by step. After doing this, we can put back the value of tt to get the answer.