Solveeit Logo

Question

Question: How do you differentiate \[x{\left( {\ln x} \right)^2}\]?...

How do you differentiate x(lnx)2x{\left( {\ln x} \right)^2}?

Explanation

Solution

In solving the question, differentiate the given equation by using product rule i.e, ddx[f(x)g(x)]\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] and the result expression must be again differentiated by using the chain rule, which states that ddx[f(g(x))]=f(g(x))g(x)\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right)g'\left( x \right),then we will get the required result.

Complete step-by-step answer:
Given expression is x(lnx)2x{\left( {\ln x} \right)^2},
Differentiating using the product rule which states that, ddx[f(x)g(x)]\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] where f(x)=xf\left( x \right) = x and g(x)=(lnx)2g\left( x \right) = {\left( {\ln x} \right)^2},
The expression becomes,
xddx[(lnx)2]+(lnx)2ddxx\Rightarrow x\dfrac{d}{{dx}}\left[ {{{\left( {\ln x} \right)}^2}} \right] + {\left( {\ln x} \right)^2}\dfrac{d}{{dx}}x,
Differentiate using the chain rule, which states that ddx[f(g(x))]=f(g(x))g(x)\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right)g'\left( x \right) where nmnf(x)=x2f\left( x \right) = {x^2} and g(x)=lnxg\left( x \right) = \ln x,
To apply chain rule set uu as lnx\ln x,
We know that ddxlnx=1x\dfrac{d}{{dx}}\ln x = \dfrac{1}{x}, now the expression becomes,
nnnx(ddu[u2]ddx(lnx))+(lnx)2ddxx \Rightarrow x\left( {\dfrac{d}{{du}}\left[ {{u^2}} \right]\dfrac{d}{{dx}}\left( {\ln x} \right)} \right) + {\left( {\ln x} \right)^2}\dfrac{d}{{dx}}x,
we know that ddxx=1\dfrac{d}{{dx}}x = 1, now the expression becomes, as
x[2u1x]+(lnx)21\Rightarrow x\left[ {2u \cdot \dfrac{1}{x}} \right] + {\left( {\ln x} \right)^2} \cdot 1,
Now substitute the value of u we get,
x[2(lnx)1x]+(lnx)21\Rightarrow x\left[ {2\left( {\ln x} \right) \cdot \dfrac{1}{x}} \right] + {\left( {\ln x} \right)^2} \cdot 1,
Now simplifying by eliminating the like terms we get,
2lnx+(lnx)2\Rightarrow 2\ln x + {\left( {\ln x} \right)^2}
So the derivative of the given expression x(lnx)2x{\left( {\ln x} \right)^2} is 2lnx+(lnx)22\ln x + {\left( {\ln x} \right)^2}.
Final Answer:

\therefore The differentiation value of x(lnx)2x{\left( {\ln x} \right)^2} is 2lnx+(lnx)22\ln x + {\left( {\ln x} \right)^2}

Note:
Differentiation is the method of evaluating a function’s derivative at any time. Some of the fundamental rules for differentiation are given below, and using these rules we can solve differentiation questions easily.
Sum or difference rule: When the function is the sum or difference of two functions, the derivative is the sum or difference of derivative of each function, i.e.,
If f(x)=u(x)±v(x)f\left( x \right) = u\left( x \right) \pm v\left( x \right),
Then f(x)=u(x)±v(x)f'\left( x \right) = u'\left( x \right) \pm v'\left( x \right).
Product rule: When the function is the product of two functions, the derivative is the sum or difference of derivative of each function, i.e.,
If f(x)=u(x)×v(x)f\left( x \right) = u\left( x \right) \times v\left( x \right),
Then f(x)=u(x)v(x)+u(x)v(x)f'\left( x \right) = u'\left( x \right)v\left( x \right) + u\left( x \right)v'\left( x \right)
Quotient Rule: If the function is in the form of two functions u(x)v(x)\dfrac{{u\left( x \right)}}{{v\left( x \right)}}, the derivative of the function can be expressed as,
f(x)=u(x)v(x)u(x)v(x)(v(x))2f'\left( x \right) = \dfrac{{u'\left( x \right)v\left( x \right) - u\left( x \right)v'\left( x \right)}}{{{{\left( {v\left( x \right)} \right)}^2}}}.
Chain Rule:
If y=f(x)=g(u)y = f\left( x \right) = g\left( u \right),
And if u=h(x)u = h\left( x \right),
Then dydx=dydu×dudx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}.