Solveeit Logo

Question

Question: How do you differentiate the following parametric equation: \(x\left( t \right)=t\ln t\), \(y\left( ...

How do you differentiate the following parametric equation: x(t)=tlntx\left( t \right)=t\ln t, y(t)=costtsin2ty\left( t \right)=\cos t-t{{\sin }^{2}}t?

Explanation

Solution

In this problem we need to find the differentiation of the given parametric equations. In the problem we have two parametric equations. So, we will consider them separately and calculate the differentiation separately. First, we will consider the equation x(t)=tlntx\left( t \right)=t\ln t Here we will apply the uvuv formula of differentiation. After applying the uvuv formula we will apply basic differentiation rules and simplify the equation to get the differentiation of the first parametric equation. Now we will consider the second parametric equation. In this equation also we will apply the uvuv formula and simplify the obtained equation to get the required solution.

Complete step-by-step solution:
Given parametric equations x(t)=tlntx\left( t \right)=t\ln t, y(t)=costtsin2ty\left( t \right)=\cos t-t{{\sin }^{2}}t.
Considering the first parametric equation which is x(t)=tlntx\left( t \right)=t\ln t.
Differentiating the above equation with respect to tt, then we will get
dxdt=ddt(tlnt)\Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( t\ln t \right)
We have the uvuv formula for the differentiation ddx(uv)=udvdx+vdudx\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}. Applying this formula in the above equation, then we will get
dxdt=tddx(lnt)+lntddt(t)\Rightarrow \dfrac{dx}{dt}=t\dfrac{d}{dx}\left( \ln t \right)+\ln t\dfrac{d}{dt}\left( t \right)
We have the differentiation formulas ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}, ddx(x)=1\dfrac{d}{dx}\left( x \right)=1. Substituting these values in the above equation, then we will get
dxdt=t×1t+lnt(1)\Rightarrow \dfrac{dx}{dt}=t\times \dfrac{1}{t}+\ln t\left( 1 \right)
Simplifying the above equation, then we will have
dxdt=1+lnt\therefore \dfrac{dx}{dt}=1+\ln t
Now considering the second parametric equation y(t)=costtsin2ty\left( t \right)=\cos t-t{{\sin }^{2}}t.
Differentiating the above equation with respect to tt, then we will get
dydt=ddt(costtsin2t)\Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( \cos t-t{{\sin }^{2}}t \right)
Applying the differentiation to each term individually, then we will have
dydt=ddt(cost)ddt(tsin2t)\Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( \cos t \right)-\dfrac{d}{dt}\left( t{{\sin }^{2}}t \right)
Again, applying the uvuv formula for the differentiation ddx(uv)=udvdx+vdudx\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx} in the above equation, then we will get
dydt=ddt(cost)[tddt(sin2t)+sin2tddt(t)]\Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( \cos t \right)-\left[ t\dfrac{d}{dt}\left( {{\sin }^{2}}t \right)+{{\sin }^{2}}t\dfrac{d}{dt}\left( t \right) \right]
We have the differentiation formulas ddx(cosx)=sinx\dfrac{d}{dx}\left( \cos x \right)=-\sin x, ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}, ddx(x)=1\dfrac{d}{dx}\left( x \right)=1. From these formulas the above equation is modified as
dydt=sinx[t×2sintddt(sint)+sin2t]\Rightarrow \dfrac{dy}{dt}=-\sin x-\left[ t\times 2\sin t\dfrac{d}{dt}\left( \sin t \right)+{{\sin }^{2}}t \right]
Again, we have the differentiation formula ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x, then we will get
dydt=sint2tsintcostsin2t\Rightarrow \dfrac{dy}{dt}=-\sin t-2t\sin t\cos t-{{\sin }^{2}}t
Taking sint-\sin t as common in the above equation, then we will get
dydt=sint(1+sint+2tcost)\therefore \dfrac{dy}{dt}=-\sin t\left( 1+\sin t+2t\cos t \right)

Note: In this problem they have only mentioned to calculate the derivatives of given parametric equations, so we have calculated individually. If they have asked to calculate the value of dydx\dfrac{dy}{dx}, then we need to calculate the ratio of dydtdxdt\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}. Now this value will be our required value dydx\dfrac{dy}{dx}.