Solveeit Logo

Question

Question: How do you differentiate \(\ln {x^{\dfrac{1}{3}}}?\)...

How do you differentiate lnx13?\ln {x^{\dfrac{1}{3}}}?

Explanation

Solution

Use chain rule to in order to solve this question, consider x13{x^{\dfrac{1}{3}}} to be uu and then apply chain rule as follows df(u)du×dudx\dfrac{{df(u)}}{{du}} \times \dfrac{{du}}{{dx}} , where f(u)f(u) is the given function in which x13{x^{\dfrac{1}{3}}} is replaced by uu
Also derivative of logarithm function is given as dlnxdx=1x\dfrac{{d\ln x}}{{dx}} = \dfrac{1}{x}

Complete step by step solution:
In this type of question in which composite functions lie, we use chain rule in order to derive the composite function. If we have y=f(u)  and  u=g(x)y = f(u)\;{\text{and}}\;u = g(x) then the derivative of will be given as follows
dydx=dydu×dudx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}
Now coming to the question, we have to find the derivative of lnx13\ln {x^{\dfrac{1}{3}}},
In order to derive lnx13\ln {x^{\dfrac{1}{3}}} we will consider x13=u{x^{\dfrac{1}{3}}} = u
Now we have
y=lnx13  and  u=x13 y=lnu  and  u=x13  y = \ln {x^{\dfrac{1}{3}}}\;{\text{and}}\;u = {x^{\dfrac{1}{3}}} \\\ \Rightarrow y = \ln u\;{\text{and}}\;u = {x^{\dfrac{1}{3}}} \\\
Differentiating yy with respect to xx we will get
dydx=dlnudx\dfrac{{dy}}{{dx}} = \dfrac{{d\ln u}}{{dx}}
And by chain rule we can write this as
dydx=dlnudu×dudx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\ln u}}{{du}} \times \dfrac{{du}}{{dx}}
Using the derivation dlnxdx=1x\dfrac{{d\ln x}}{{dx}} = \dfrac{1}{x} , we will get
dydx=dlnudu×dudx dydx=1u×dudx  \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\ln u}}{{du}} \times \dfrac{{du}}{{dx}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{u} \times \dfrac{{du}}{{dx}} \\\
Now putting the value of u=x13u = {x^{\dfrac{1}{3}}} in the derivation and further derivate it with respect to xx
dydx=1x13×dx13dx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{{x^{\dfrac{1}{3}}}}} \times \dfrac{{d{x^{\dfrac{1}{3}}}}}{{dx}}
According to power rule dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}
Using the power rule to find dx13dx\dfrac{{d{x^{\dfrac{1}{3}}}}}{{dx}}, we will get
dydx=1x13×dx13dx dydx=1x13×13×x131 dydx=13×1x13×x23  \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{{x^{\dfrac{1}{3}}}}} \times \dfrac{{d{x^{\dfrac{1}{3}}}}}{{dx}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{{x^{\dfrac{1}{3}}}}} \times \dfrac{1}{3} \times {x^{\dfrac{1}{3} - 1}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{3} \times \dfrac{1}{{{x^{\dfrac{1}{3}}}}} \times {x^{\dfrac{{ - 2}}{3}}} \\\
Now writing x23=1x23{x^{\dfrac{{ - 2}}{3}}} = \dfrac{1}{{{x^{\dfrac{2}{3}}}}}
dydx=13×1x13×1x23 dydx=13×1x13+23 dydx=13×1x dydx=13x  \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{3} \times \dfrac{1}{{{x^{\dfrac{1}{3}}}}} \times \dfrac{1}{{{x^{\dfrac{2}{3}}}}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{3} \times \dfrac{1}{{{x^{\dfrac{1}{3} + \dfrac{2}{3}}}}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{3} \times \dfrac{1}{x} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{3x}} \\\
That is the required derivative of lnx13\ln {x^{\dfrac{1}{3}}} is equals to 13x\dfrac{1}{{3x}}

Note: Chain rule has one more application if functions f(x)  and  g(x)f(x)\;{\text{and}}\;g(x) are separately differentiable then the function h(x)=fg(x)h(x) = f \circ g(x) will be differentiated as h(x)=f(g(x))×g(x)h'(x) = f'(g(x)) \times g'(x)
We can solve this problem directly without using the chain rule, by using the property of logarithm function.
If the argument of a log has some digit in its power then we can rewrite the log function as the exponent times the logarithm of the base. Mathematically it can be expressed as follows
lnxn=n×lnx\ln {x^n} = n \times \ln x
This rule is also known as the power rule of logarithm function.