Solveeit Logo

Question

Question: How do you differentiate \(\ln \left( {\dfrac{y}{x}} \right) = xy\) ?...

How do you differentiate ln(yx)=xy\ln \left( {\dfrac{y}{x}} \right) = xy ?

Explanation

Solution

In the given problem, we are required to differentiate both sides of the equation ln(yx)=xy\ln \left( {\dfrac{y}{x}} \right) = xy with respect to x. Since, ln(yx)=xy\ln \left( {\dfrac{y}{x}} \right) = xy is an implicit function, so we will have to differentiate the function with the implicit method of differentiation. So, differentiation of ln(yx)=xy\ln \left( {\dfrac{y}{x}} \right) = xy with respect to x will be done layer by layer using the chain rule of differentiation as in the given function, we cannot isolate the variables xx and yy.

Complete step by step answer:
Consider, ln(yx)=xy\ln \left( {\dfrac{y}{x}} \right) = xy. Differentiating both sides of the equation with respect to x, we get,
ddx[ln(yx)]=ddx(xy)\dfrac{d}{{dx}}\left[ {\ln \left( {\dfrac{y}{x}} \right)} \right] = \dfrac{d}{{dx}}\left( {xy} \right)
We know the product rule of differentiation as ddx(f(x)×g(x))=f(x)×ddx(g(x))+g(x)×ddx(f(x))\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right) + g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) .

So, we get the right side of the equation as,
ddx[ln(yx)]=xdydx+yd(x)dx\Rightarrow \dfrac{d}{{dx}}\left[ {\ln \left( {\dfrac{y}{x}} \right)} \right] = x\dfrac{{dy}}{{dx}} + y\dfrac{{d\left( x \right)}}{{dx}}
Now, we make use of the power rule of differentiation as d(xn)dx=nxn1\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}. So, we get,
ddx[ln(yx)]=xdydx+y\Rightarrow \dfrac{d}{{dx}}\left[ {\ln \left( {\dfrac{y}{x}} \right)} \right] = x\dfrac{{dy}}{{dx}} + y
We consider yx\dfrac{y}{x} as t. So, we get,
ddx[lnt]=xdydx+y\Rightarrow \dfrac{d}{{dx}}\left[ {\ln t} \right] = x\dfrac{{dy}}{{dx}} + y

Now, we know that the derivative of the logarithmic function lnx\ln x with respect to x is (1x)\left( {\dfrac{1}{x}} \right). Hence, we get,
1t(dtdx)=xdydx+y\Rightarrow \dfrac{1}{t}\left( {\dfrac{{dt}}{{dx}}} \right) = x\dfrac{{dy}}{{dx}} + y
Now, putting t as (yx)\left( {\dfrac{y}{x}} \right), we get,
1(yx)(d(yx)dx)=xdydx+y\Rightarrow \dfrac{1}{{\left( {\dfrac{y}{x}} \right)}}\left( {\dfrac{{d\left( {\dfrac{y}{x}} \right)}}{{dx}}} \right) = x\dfrac{{dy}}{{dx}} + y
Now, we use the quotient rule of differentiation as ddx(f(x)g(x))=g(x)×ddx(f(x))f(x)×ddx(g(x))[g(x)]2\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}} .
So, we get,
(xy)(xdydxy(dxdx)x2)=xdydx+y\Rightarrow \left( {\dfrac{x}{y}} \right)\left( {\dfrac{{x\dfrac{{dy}}{{dx}} - y\left( {\dfrac{{dx}}{{dx}}} \right)}}{{{x^2}}}} \right) = x\dfrac{{dy}}{{dx}} + y

Opening the brackets,
(1y)(xdydxyx)=xdydx+y\Rightarrow \left( {\dfrac{1}{y}} \right)\left( {\dfrac{{x\dfrac{{dy}}{{dx}} - y}}{x}} \right) = x\dfrac{{dy}}{{dx}} + y
1ydydx1x=xdydx+y\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - \dfrac{1}{x} = x\dfrac{{dy}}{{dx}} + y
Now, isolating the dydx\dfrac{{dy}}{{dx}} terms, we get,
1ydydxxdydx=1x+y\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}} = \dfrac{1}{x} + y
Taking dydx\dfrac{{dy}}{{dx}} common in left side of equation, we get,
dydx=(1+xyx)(y1xy)\therefore \dfrac{{dy}}{{dx}} = \left( {\dfrac{{1 + xy}}{x}} \right)\left( {\dfrac{y}{{1 - xy}}} \right)

Therefore, we get dydx\dfrac{{dy}}{{dx}} as (1+xyx)(y1xy)\left( {\dfrac{{1 + xy}}{x}} \right)\left( {\dfrac{y}{{1 - xy}}} \right).

Note: Implicit functions are those functions that involve two variables and the two variables are not separable and cannot be isolated from each other. Quotient rule of differentiation ddx(f(x)g(x))=g(x)×ddx(f(x))f(x)×ddx(g(x))[g(x)]2\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}} is used to find derivative of rational expressions whereas product rule helps in finding derivative of product functions.