Solveeit Logo

Question

Question: How do you differentiate \[{{\left( \ln x \right)}^{\tan x}}\]?...

How do you differentiate (lnx)tanx{{\left( \ln x \right)}^{\tan x}}?

Explanation

Solution

The given function is of the form (f(x))g(x){{\left( f(x) \right)}^{g(x)}}. We can’t differentiate these types of functions directly. We will need to make some changes to the function before differentiating it. We should know the derivative of the function lnx\ln x is 1x\dfrac{1}{x}. Also, the derivative of the function tanx\tan x is sec2x{{\sec }^{2}}x.

Complete step by step answer:
Let y=(lnx)tanxy={{\left( \ln x \right)}^{\tan x}}. Taking log on both sides of the function, we get lny=ln((lnx)tanx)\ln y=\ln \left( {{\left( \ln x \right)}^{\tan x}} \right). We can simplify this expression as y=tanxln(lnx)y=\tan x\ln \left( \ln x \right).
Differentiating both sides of this function, we get
d(lny)dx=d(tanxln(lnx))dx\dfrac{d\left( \ln y \right)}{dx}=\dfrac{d\left( \tan x\ln \left( \ln x \right) \right)}{dx}
We know that the derivative of lnx\ln x is 1x\dfrac{1}{x}, hence
1ydydx=d(tanxln(lnx))dx\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d\left( \tan x\ln \left( \ln x \right) \right)}{dx}
Using product rule in the above expression, we can evaluate it as
1ydydx=d(tanx)dxln(lnx)+tanxd(ln(lnx))dx\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d\left( \tan x \right)}{dx}\ln \left( \ln x \right)+\tan x\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}
The derivative of tanx\tan x is sec2x{{\sec }^{2}}x, substituting it in the above equation, we get
1ydydx=sec2xln(lnx)+tanxd(ln(lnx))dx\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}={{\sec }^{2}}x\ln \left( \ln x \right)+\tan x\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}
As ln(lnx)\ln \left( \ln x \right) is a composite function of the form f(g(x))f\left( g(x) \right). The composite functions are functions of the form f(g(x))f\left( g(x) \right), their derivative is evaluated as, d(f(g(x)))dx=d(f(g(x)))d(g(x))d(g(x))dx\dfrac{d\left( f\left( g(x) \right) \right)}{dx}=\dfrac{d\left( f\left( g(x) \right) \right)}{d\left( g(x) \right)}\dfrac{d\left( g(x) \right)}{dx}.
Thus, d(ln(lnx))dx=d(ln(lnx))d(lnx)d(lnx)dx\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}=\dfrac{d\left( \ln \left( \ln x \right) \right)}{d\left( \ln x \right)}\dfrac{d\left( \ln x \right)}{dx}. Substituting the values of derivative, we get

& \Rightarrow \dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}=\dfrac{d\left( \ln \left( \ln x \right) \right)}{d\left( \ln x \right)}\dfrac{d\left( \ln x \right)}{dx} \\\ & \Rightarrow \dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}=\dfrac{1}{\ln x}\dfrac{1}{x}=\dfrac{1}{x\ln x} \\\ \end{aligned}$$ substituting this expression in the derivative of the required function, we get $$\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}={{\sec }^{2}}x\ln \left( \ln x \right)+\tan x\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}$$ $$\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}={{\sec }^{2}}x\ln \left( \ln x \right)+\tan x\dfrac{1}{x\ln x}$$ Multiplying y on both sides, we get $$\Rightarrow \dfrac{dy}{dx}=\left( {{\sec }^{2}}x\ln \left( \ln x \right)+\dfrac{\tan x}{x\ln x} \right)y$$ substituting the value of y in above expression, we get $$\Rightarrow \dfrac{dy}{dx}=\left( {{\sec }^{2}}x\ln \left( \ln x \right)+\dfrac{\tan x}{x\ln x} \right)\tan x\ln \left( \ln x \right)$$ **Note:** This is the standard procedure to evaluate the functions of the form $${{\left( f(x) \right)}^{g(x)}}$$. The steps are as follows, Step 1: Take a log on both sides of equation $$y={{\left( f(x) \right)}^{g(x)}}$$. Simplify the equation as $$\ln y=g(x)\ln \left( f(x) \right)$$. Step 2: Differentiate both sides as $$\dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d\left( g(x)\ln \left( f(x) \right) \right)}{dx}$$ Step 3: simplify the right-hand side using the product rule, and composite function derivative Step 4: multiply both sides by y, simplify the expression.