Solveeit Logo

Question

Question: How do you differentiate \[{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3}\] ?...

How do you differentiate (1+(1x))3{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} ?

Explanation

Solution

Hint : Here we need to differentiate the given problem with respect to x. here we use the algebraic identity (a+b)3=a3+b3+3ab(a+b){\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right) and then we differentiate it. We know that the differentiation of constant term is zero and differentiation of xn{x^n} is d(xn)dx=n.xn1\dfrac{{d({x^n})}}{{dx}} = n.{x^{n - 1}} .

Complete step-by-step answer :
Given,
(1+(1x))3{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} .
Now applying (a+b)3=a3+b3+3ab(a+b){\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right) we have,
(1+(1x))3=13+(1x)3+3(1)(1x)(1+1x){\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = {1^3} + {\left( {\dfrac{1}{x}} \right)^3} + 3\left( 1 \right)\left( {\dfrac{1}{x}} \right)\left( {1 + \dfrac{1}{x}} \right)
=1+1x3+3x(1+1x)= 1 + \dfrac{1}{{{x^3}}} + \dfrac{3}{x}\left( {1 + \dfrac{1}{x}} \right)
=1+1x3+3x+3x2= 1 + \dfrac{1}{{{x^3}}} + \dfrac{3}{x} + \dfrac{3}{{{x^2}}}
=1+x3+3x1+3x2= 1 + {x^{ - 3}} + 3{x^{ - 1}} + 3{x^{ - 2}}
Thus we have
(1+(1x))3=1+x3+3x1+3x2{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = 1 + {x^{ - 3}} + 3{x^{ - 1}} + 3{x^{ - 2}}
Now differentiating with respect to ‘x’,
ddx(1+(1x))3=ddx(1+x3+3x1+3x2)\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = \dfrac{d}{{dx}}\left( {1 + {x^{ - 3}} + 3{x^{ - 1}} + 3{x^{ - 2}}} \right)
By linear combination rule,
ddx(1+(1x))3=ddx(1)+ddx(x3)+3ddx(x1)+3ddx(x2)\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = \dfrac{d}{{dx}}\left( 1 \right) + \dfrac{d}{{dx}}\left( {{x^{ - 3}}} \right) + 3\dfrac{d}{{dx}}\left( {{x^{ - 1}}} \right) + 3\dfrac{d}{{dx}}\left( {{x^{ - 2}}} \right)
Differentiation of constant is zero,
ddx(1+(1x))3=0+3x31+3(1.x11)+3(2.x21)\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = 0 + - 3{x^{ - 3 - 1}} + 3\left( { - 1.{x^{ - 1 - 1}}} \right) + 3\left( { - 2.{x^{ - 2 - 1}}} \right)
ddx(1+(1x))3=3x4+3(1.x2)+3(2.x3)\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = - 3{x^{ - 4}} + 3\left( { - 1.{x^{ - 2}}} \right) + 3\left( { - 2.{x^{ - 3}}} \right)
ddx(1+(1x))3=3x43x26.x3\dfrac{d}{{dx}}{\left( {1 + \left( {\dfrac{1}{x}} \right)} \right)^3} = - 3{x^{ - 4}} - 3{x^{ - 2}} - 6.{x^{ - 3}} . This is the required result.
So, the correct answer is “3x43x26.x3- 3{x^{ - 4}} - 3{x^{ - 2}} - 6.{x^{ - 3}} ”.

Note : \bullet Linear combination rule: The linearity law is very important to emphasize its nature with alternate notation. Symbolically it is specified as h(x)=af(x)+bg(x)h'(x) = af'(x) + bg'(x)
\bullet Quotient rule: The derivative of one function divided by other is found by quotient rule such as [f(x)g(x)]1=g(x)f(x)f(x)g(x)[g(x)]2{\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] ^1} = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right] }^2}}} .
\bullet Product rule: When a derivative of a product of two function is to be found, then we use product rule that is dydx=u×dvdx+v×dudx\dfrac{{dy}}{{dx}} = u \times \dfrac{{dv}}{{dx}} + v \times \dfrac{{du}}{{dx}} .
\bullet Chain rule: To find the derivative of composition function or function of a function, we use chain rule. That is fog(x0)=[(fog)(x0)]g(x0)fog'({x_0}) = [(f'og)({x_0})] g'({x_0}) .