Solveeit Logo

Question

Question: How do you differentiate \[f\left( x \right)=\sin \left( \dfrac{\pi }{x} \right)\]?...

How do you differentiate f(x)=sin(πx)f\left( x \right)=\sin \left( \dfrac{\pi }{x} \right)?

Explanation

Solution

Use the chain rule of differentiation to find the derivative of the given function sin(πx)\sin \left( \dfrac{\pi }{x} \right). First differentiate sin(πx)\sin \left( \dfrac{\pi }{x} \right) with respect to (πx)\left( \dfrac{\pi }{x} \right) and then differentiate (πx)\left( \dfrac{\pi }{x} \right) with respect to x and take their product to get the answer. Use the basic differentiation formula: - dsinxdx=cosx\dfrac{d\sin x}{dx}=\cos x and d(1x)=1x2d\left( \dfrac{1}{x} \right)=\dfrac{-1}{{{x}^{2}}} to get the required derivative.

Complete step by step answer:
Here, we have been provided with a function sin(πx)\sin \left( \dfrac{\pi }{x} \right) and we have to find its derivative. That means we have to differentiate this function.
Now, let us assume the given function as f (x). So, we have,
f(x)=sin(πx)\Rightarrow f\left( x \right)=\sin \left( \dfrac{\pi }{x} \right)
Since, the variable is x therefore we have to find the derivative with respect to x, i.e., df(x)dx\dfrac{df\left( x \right)}{dx}. So, differentiating both the sides, we get,
df(x)dx=dsin(πx)dx\Rightarrow \dfrac{df\left( x \right)}{dx}=\dfrac{d\sin \left( \dfrac{\pi }{x} \right)}{dx}
Using the chain rule of differentiation, we get,
df(x)dx=dsin(πx)dx×d(πx)dx\Rightarrow \dfrac{df\left( x \right)}{dx}=\dfrac{d\sin \left( \dfrac{\pi }{x} \right)}{dx}\times \dfrac{d\left( \dfrac{\pi }{x} \right)}{dx}
What we are doing is, we are first differentiating f (x) with respect to (πx)\left( \dfrac{\pi }{x} \right) and then we are differentiating (πx)\left( \dfrac{\pi }{x} \right) with respect to x and then finally taking their product. Now, we know that the derivative of sine function is a cosine function, i.e., dsinxdx=cosx\dfrac{d\sin x}{dx}=\cos x, so we have,
df(x)dx=cos(πx)×d(πx)dx\Rightarrow \dfrac{df\left( x \right)}{dx}=\cos \left( \dfrac{\pi }{x} \right)\times \dfrac{d\left( \dfrac{\pi }{x} \right)}{dx}
Since, π\pi is a constant therefore it can be taken out of the derivative. So, we get,
df(x)dx=cos(πx)×π[d(1x)dx]\Rightarrow \dfrac{df\left( x \right)}{dx}=\cos \left( \dfrac{\pi }{x} \right)\times \pi \left[ \dfrac{d\left( \dfrac{1}{x} \right)}{dx} \right]
We can write 1x\dfrac{1}{x} as x1{{x}^{-1}}, so we have,
df(x)dx=cos(πx)×π[d(x1)dx]\Rightarrow \dfrac{df\left( x \right)}{dx}=\cos \left( \dfrac{\pi }{x} \right)\times \pi \left[ \dfrac{d\left( {{x}^{-1}} \right)}{dx} \right]
Using the formula: - dxndx=nxn1\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}, we get,

& \Rightarrow \dfrac{df\left( x \right)}{dx}=\cos \left( \dfrac{\pi }{x} \right)\times \pi \left[ \left( -1 \right)\times {{x}^{-1-1}} \right] \\\ & \Rightarrow \dfrac{df\left( x \right)}{dx}=-\pi \cos \left( \dfrac{\pi }{x} \right){{x}^{-2}} \\\ & \Rightarrow \dfrac{df\left( x \right)}{dx}=\dfrac{-\pi \cos \left( \dfrac{\pi }{x} \right)}{{{x}^{2}}} \\\ \end{aligned}$$ Hence, the derivative of $$f\left( x \right)=\sin \left( \dfrac{\pi }{x} \right)$$ is $$\dfrac{-\pi \cos \left( \dfrac{\pi }{x} \right)}{{{x}^{2}}}$$. **Note:** One may note that we are assuming the angle $$\left( \dfrac{\pi }{x} \right)$$ in radian. Sometimes we will be provided with the angel in degrees like $$\cos {{\left( 180x \right)}^{\circ }}$$. In such cases we cannot differentiate the function directly. First, we have to convert the angle in radians using the formula: - $${{1}^{\circ }}=\dfrac{\pi }{180}$$ radian and then only we can differentiate. You must remember all the basic formulas of differentiation like: - the chain rule, product rule, $$\dfrac{u}{v}$$ rule etc. because they are frequently used in the topic ‘calculus’.