Solveeit Logo

Question

Question: How do you differentiate \[f\left( x \right)=2\sin x\cos x\]?...

How do you differentiate f(x)=2sinxcosxf\left( x \right)=2\sin x\cos x?

Explanation

Solution

Assume f(x)f\left( x \right) as the product of two trigonometric functions sinx\sin x and cosx\cos x and consider them as ‘u’ and ‘v’ respectively. Now, apply the product rule of differentiation given as: - d(u×v)dx=udvdx+vdudx\dfrac{d\left( u\times v \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx} to get the answer. Use the formula: - d(cosx)dx=sinx\dfrac{d\left( \cos x \right)}{dx}=-\sin x and d(sinx)dx=cosx\dfrac{d\left( \sin x \right)}{dx}=\cos x. Use the relation: - cos2xsin2x=cos2x{{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x.

Complete step by step answer:
Here, we have been provided with the function f(x)=2sinxcosxf\left( x \right)=2\sin x\cos x and we are asked to differentiate it.
Now, we can assume the function given as the product of two trigonometric functions i.e., sinx\sin x and cosx\cos x, which is multiplied to a constant 2. So, we have,
f(x)=2×cosx×sinx=2×sinx×cosx\Rightarrow f\left( x \right)=2\times \cos x\times \sin x=2\times \sin x\times \cos x
Let us assume sinx\sin x and cosx\cos x as ‘u’ and ‘v’ respectively.
So, we have,
f(x)=2×u×v\Rightarrow f\left( x \right)=2\times u\times v
Differentiating both the sides with respect to x, we get,
d[f(x)]dx=d(2×u×v)dx\Rightarrow \dfrac{d\left[ f\left( x \right) \right]}{dx}=\dfrac{d\left( 2\times u\times v \right)}{dx}
Since, 2 is a constant so it can be taken out of the derivative. Therefore, we have,
d[f(x)]dx=2×d(u×v)dx\Rightarrow \dfrac{d\left[ f\left( x \right) \right]}{dx}=2\times \dfrac{d\left( u\times v \right)}{dx}
Now, applying the product rule of differentiation given as: - d(u×v)dx=udvdx+vdudx\dfrac{d\left( u\times v \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}, we get,
d[f(x)]dx=2×[udvdx+vdudx]\Rightarrow \dfrac{d\left[ f\left( x \right) \right]}{dx}=2\times \left[ u\dfrac{dv}{dx}+v\dfrac{du}{dx} \right]
Substituting the assumed values of u and v, we get,
d[f(x)]dx=2×[sinxd(cosx)dx+cosxd(sinx)dx]\Rightarrow \dfrac{d\left[ f\left( x \right) \right]}{dx}=2\times \left[ \sin x\dfrac{d\left( \cos x \right)}{dx}+\cos x\dfrac{d\left( \sin x \right)}{dx} \right]
Using the basic formulas: - d(cosx)dx=sinx\dfrac{d\left( \cos x \right)}{dx}=-\sin x and d(sinx)dx=cosx\dfrac{d\left( \sin x \right)}{dx}=\cos x, we get,

& \Rightarrow \dfrac{d\left[ f\left( x \right) \right]}{dx}=2\times \left[ \sin x\left( -\sin x \right)+\cos x\left( \cos x \right) \right] \\\ & \Rightarrow \dfrac{d\left[ f\left( x \right) \right]}{dx}=2\times \left[ -{{\sin }^{2}}x+{{\cos }^{2}}x \right] \\\ & \Rightarrow \dfrac{d\left[ f\left( x \right) \right]}{dx}=2\times \left[ {{\cos }^{2}}x-{{\sin }^{2}}x \right] \\\ \end{aligned}$$ Using the trigonometric identity: - $${{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x$$, we get, $$\Rightarrow \dfrac{d\left[ f\left( x \right) \right]}{dx}=2\cos 2x$$ Hence, the above relation is our answer. **Note:** One may note that we can also solve the above question with an easier method. What we can do is we will use the trigonometric identity $$2\sin x\cos x=\sin 2x$$ at the initial stage of the solution. Now, we will use the formula: - $$\dfrac{d\sin \left( ax+b \right)}{dx}=a\cos \left( ax+b \right)$$, where ‘a’ is the coefficient of x and ‘b’ is the constant term, to get the answer. Here, a = 2, b = 0. You must remember all the basic formulas of differentiation like chain rule, product rule, $$\dfrac{u}{v}$$ etc. rule as these are used everywhere in the topic of calculus.