Solveeit Logo

Question

Question: How do you differentiate \[\dfrac{x}{{\cos x}}\]?...

How do you differentiate xcosx\dfrac{x}{{\cos x}}?

Explanation

Solution

In this question, we will differentiate the given expression by using the division rule of differentiation. Use the formula of derivatives and then simplify the answer by using trigonometric ratios to get the final answer.

Complete step by step answer:
Here we have to differentiate xcosx\dfrac{x}{{\cos x}}.
Now differentiating xcosx\dfrac{x}{{\cos x}} w.r.t xx, we have
ddx(xcosx)=?\dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = ?
We know that if f(x)f\left( x \right) and g(x)g\left( x \right) are functions of xx then derivative of f(x)g(x)\dfrac{{f\left( x \right)}}{{g\left( x \right)}} with respective of xx is given by g(x)d(f(x))dxf(x)d(g(x))dx(g(x))2\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}.
So, we have ddx(f(x)g(x))=g(x)d(f(x))dxf(x)d(g(x))dx(g(x))2\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}.
By using the above formula, we get

ddx(xcosx)=cosxd(x)dxxd(cosx)dx(cosx)2 ddx(xcosx)=cosx(1)xd(cosx)dxcos2x  \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\dfrac{{d\left( x \right)}}{{dx}} - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\left( {\cos x} \right)}^2}}} \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\left( 1 \right) - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\cos }^2}x}} \\\

We know that ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x. By substituting this value, we have

ddx(xcosx)=cosxx(sinx)cos2x ddx(xcosx)=cosx+x(sinx)cos2x ddx(xcosx)=cosx+xsinxcos2x  \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x - x\left( { - \sin x} \right)}}{{{{\cos }^2}x}} \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\left( {\sin x} \right)}}{{{{\cos }^2}x}} \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\sin x}}{{{{\cos }^2}x}} \\\

Splitting the terms on right-hand side, we have
ddx(xcosx)=cosxcos2x+xsinxcos2x\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x}}{{{{\cos }^2}x}} + \dfrac{{x\sin x}}{{{{\cos }^2}x}}
Cancelling the common terms, we get
ddx(xcosx)=1cosx+xsinxcosx1cosx\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{1}{{\cos x}} + \dfrac{{x\sin x}}{{\cos x}}\dfrac{1}{{\cos x}}
We know that 1cosx=secx\dfrac{1}{{\cos x}} = \sec x and sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x. Substituting this value, we have
ddx(xcosx)=secx+xtanxsecx\therefore \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \sec x + x\tan x\sec x

Thus, the derivative of xcosx\dfrac{x}{{\cos x}} is secx+xtanxsecx\sec x + x\tan x\sec x.

Note: In mathematics, division rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let f(x)f\left( x \right) and g(x)g\left( x \right) are functions of xx then derivative of f(x)g(x)\dfrac{{f\left( x \right)}}{{g\left( x \right)}} with respective of xx is given by g(x)d(f(x))dxf(x)d(g(x))dx(g(x))2\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}.