Solveeit Logo

Question

Question: How do you determine the limit of \( \dfrac{{\sin x}}{x}\) as \( x\) approaches infinity?...

How do you determine the limit of sinxx \dfrac{{\sin x}}{x} as x x approaches infinity?

Explanation

Solution

To solve this question, we can use the Squeeze Theorem, which states that if we have some function f(x) f(x) , we define new functions h(x),g(x) h(x),g(x) such that h(x)f(x)g(x) h(x) \leqslant f(x) \leqslant g(x) . First we are considering three triangles for defining two new functions from the given function in the second quadrant of the unit circle. Then finding the area of each triangle which will give the three functions and now from those three functions we are forming the given function (sinxx) \left( {\dfrac{{\sin x}}{x}} \right) . Then by applying the squeeze theorem we can find the limit of the function.

Complete step-by-step solution:
In this theorem, if h(x)f(x)g(x) h(x) \leqslant f(x) \leqslant g(x) for all numbers, and at some point x = a then we have h(x)=g(x) h(x) = g(x) , the f(x) f(x) must also be equal to 1. 1. . In addition, we can use this theorem to find limits for sinxx \dfrac{{\sin x}}{x} at x = 0, by squeezing sinxx \dfrac{{\sin x}}{x} by two nicer functions and using them to find the limit at x = 0. F or a real number ‘a a ’ if limxah(x)=limxag(x)=1 \mathop {\lim }\limits_{x \to a} h(x) = \mathop {\lim }\limits_{x \to a} g(x) = 1 , then limxaf(x) \mathop {\lim }\limits_{x \to a} f(x) must be equal to 1 1 .

Let us Consider three triangles ΔABE,ΔABD,ΔAFD \Delta ABE,\Delta ABD,\Delta AFD
Where the Area of ΔABE \Delta ABE \leqslant Area of ΔABD \Delta ABD \leqslant Area of ΔAFD \Delta AFD
Area of ΔABE=12cos(x)sin(x)...........(1) \Delta ABE = \dfrac{1}{2}\cos (x)\sin (x)...........(1)
Considering ΔABD \Delta ABD , it is the fraction of whole circle therfore it is x2π \dfrac{x}{{2\pi }} and the whole circle has an area of x x
\therefore Area of ΔABD=x2π.π=x2............(2) \Delta ABD = \dfrac{x}{{2\pi }}.\pi = \dfrac{x}{2}............(2)
Next, the area of ΔAFD \Delta AFD which has the base of 1 1 and height of tanx \tan x
\therefore Area of ΔAFD \Delta AFD =12.1.tanx = \dfrac{1}{2}.1.\tan x
Area of ΔAFD \Delta AFD =12.sinxcosx............(3) = \dfrac{1}{2}.\dfrac{{\sin x}}{{\cos x}}............(3)
Because of ΔABD \Delta ABD sits inside the ΔAFD \Delta AFD and ΔABE \Delta ABE sits inside ΔABD \Delta ABD
We can write
12cosx.sinxx212sinxcosx..........(4)\Rightarrow \dfrac{1}{2}\cos x.\sin x \leqslant \dfrac{x}{2} \leqslant \dfrac{1}{2}\dfrac{{\sin x}}{{\cos x}}..........(4)
Now we are going to divide (4) equation by sinx \sin x and multiply by 2 2
cosxxsinx1cosx.................(5)\Rightarrow \cos x \leqslant \dfrac{x}{{\sin x}} \leqslant \dfrac{1}{{\cos x}}.................(5)
To get sinxx \dfrac{{\sin x}}{x} , we are going to take reciprocal of all three
1cosxsinxxcosx\therefore \dfrac{1}{{\cos x}} \geqslant \dfrac{{\sin x}}{x} \geqslant \cos x
Now rearranging ,
cosxxsinx1cosx...........(6)\Rightarrow \cos x \leqslant \dfrac{x}{{\sin x}} \leqslant \dfrac{1}{{\cos x}}...........\left( 6 \right)
Now applying the squeeze theorem on the above equation
h(x)f(x)g(x)h(x) \leqslant f(x) \leqslant g(x)
We can get the values of
h(x)=cosx\Rightarrow h(x) = \cos x
f(x)=xsinx\Rightarrow f(x) = \dfrac{x}{{\sin x}}
g(x)=1cosx\Rightarrow g(x) = \dfrac{1}{{\cos x}}
Now, when x x approaches 0 0
limx0cosx=1=limx01cosx\Rightarrow \mathop {\lim }\limits_{x \to 0} \cos x = 1 = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{\cos x}} Because cos(0)=1 \cos \left( 0 \right) = 1 and (1cos(0))=1 \left( {\dfrac{1}{{\cos \left( 0 \right)}}} \right) = 1
Therefore , the new defined two function is equal to 1 1 and so according to the squeeze theorem the given function
f(x)=xsinx=1\therefore f(x) = \dfrac{x}{{\sin x}} = 1
limx0sinxx=1\therefore \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1

Therefore the value of limx0sinxx \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} is equal to 1.

Note: According to the diagram, we have only found the limits for x x approaching 0 0 from the positive side but what is the limit of x x when it approaches 0 0 from the negative side?
Now Equation (5) (5) can be written for negative side of x x as follows
cos(x)sin(x)x1cos(x)\Rightarrow \cos ( - x) \leqslant \dfrac{{\sin ( - x)}}{{ - x}} \leqslant \dfrac{1}{{\cos ( - x)}}
If x<0 x < 0 then
sin(x)=sin(x)\sin ( - x) = - \sin (x)
sinx=sin(x)\sin x = - \sin ( - x)
If (x) \left( x \right) is negative , (x) \left( { - x} \right) is positive
cosxxsinx1cosx\therefore \cos x \leqslant \dfrac{x}{{\sin x}} \leqslant \dfrac{1}{{\cos x}} [This is the squeeze theorem we used for the positive value of x x ]
\therefore Squeeze theorem works on both sides, therefore
limx0sinxx=1\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1
Hence the limit for the function (sinxx) \left( {\dfrac{{\sin x}}{x}} \right) on both sides is equal to (1) \left( 1 \right)