Solveeit Logo

Question

Question: How do you determine the convergence or divergence of \[\sum{\dfrac{{{\left( -1 \right)}^{n}}}{n!}}\...

How do you determine the convergence or divergence of (1)nn!\sum{\dfrac{{{\left( -1 \right)}^{n}}}{n!}} from [1,)\left[ 1,\infty \right) ?

Explanation

Solution

To determine the convergence or divergence of (1)nn!\sum{\dfrac{{{\left( -1 \right)}^{n}}}{n!}} from [1,)\left[ 1,\infty \right) , we will be using d'Alembert's ratio test. Let us consider a series S=r=1anS=\sum\limits_{r=1}^{\infty }{{{a}_{n}}} and L=limnan+1anL=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right| . If we obtain L < 1 then the series converges absolutely.If we get L > 1 then the series is divergent and if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case. We have to consider an=(1)nn!{{a}_{n}}=\dfrac{{{\left( -1 \right)}^{n}}}{n!} and find L.

Complete step by step solution:
We need to determine the convergence or divergence of (1)nn!\sum{\dfrac{{{\left( -1 \right)}^{n}}}{n!}} from [1,)\left[ 1,\infty \right) . We will be using d'Alembert's ratio test. Let us consider a series S=r=1anS=\sum\limits_{r=1}^{\infty }{{{a}_{n}}} and L=limnan+1anL=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right| .
If we obtain L < 1 then the series converges absolutely.If we get L > 1 then the series is divergent and if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.
Now, let us consider an=(1)nn!{{a}_{n}}=\dfrac{{{\left( -1 \right)}^{n}}}{n!} . Let’s find L.
L=limn(1)n+1(n+1)!(1)nn! L=limn(1)n+1(n+1)!×n!(1)n \begin{aligned} & L=\displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{\left( -1 \right)}^{n+1}}}{\left( n+1 \right)!}}{\dfrac{{{\left( -1 \right)}^{n}}}{n!}} \right| \\\ & \Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{\left( -1 \right)}^{n+1}}}{\left( n+1 \right)!}\times \dfrac{n!}{{{\left( -1 \right)}^{n}}} \right| \\\ \end{aligned}
Let us expand (n+1)!\left( n+1 \right)! as follows.
L=limn(1)n+1(n+1)×n!×n!(1)n\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{\left( -1 \right)}^{n+1}}}{\left( n+1 \right)\times n!}\times \dfrac{n!}{{{\left( -1 \right)}^{n}}} \right|
Now, we can cancel the common terms.
L=limn(1)n+1(n+1)×1(1)n\Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{\left( -1 \right)}^{n+1}}}{\left( n+1 \right)}\times \dfrac{1}{{{\left( -1 \right)}^{n}}} \right|
We know that aman=amn\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}} . Hence, the above equation becomes

& \Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{1}{\left( n+1 \right)}\times \dfrac{{{\left( -1 \right)}^{n+1}}}{{{\left( -1 \right)}^{n}}} \right| \\\ & \Rightarrow L=\displaystyle \lim_{n \to \infty }\left| \dfrac{1}{\left( n+1 \right)}\times -1 \right| \\\ & \Rightarrow L=\displaystyle \lim_{n \to \infty }\left| -\dfrac{1}{\left( n+1 \right)} \right| \\\ \end{aligned}$$ We can write the above equation as $$\Rightarrow L=\displaystyle \lim_{n \to \infty }\dfrac{1}{\left( n+1 \right)}$$ Let us now apply the limit. We will get $$L=\dfrac{1}{\left( \infty +1 \right)}=\dfrac{1}{\infty }=0$$ We can see that L<1\. Therefore, the given series converges absolutely. **Note:** Students must know the rules of exponents and factorials to solve these types of problems. Students may make mistakes by writing the formula for L as $L=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n}}}{{{a}_{n+1}}} \right|$ . Before applying the limits, we must take the absolute value of the expression as in $$L=\displaystyle \lim_{n \to \infty }\left| -\dfrac{1}{\left( n+1 \right)} \right|$$ .