Solveeit Logo

Question

Question: How do you determine if the improper integral converges or diverges \(\int\limits_{0}^{\infty }{{{x}...

How do you determine if the improper integral converges or diverges 0x2exdx\int\limits_{0}^{\infty }{{{x}^{2}}{{e}^{-x}}dx}?

Explanation

Solution

We first convert the integral form to limit form where 0x2exdx=limk0kx2exdx\int\limits_{0}^{\infty }{{{x}^{2}}{{e}^{-x}}dx}=\displaystyle \lim_{k \to \infty }\int\limits_{0}^{k}{{{x}^{2}}{{e}^{-x}}dx}. We find the limit value of the integral using parts form. If there is a limit value then we have a converging integral.

Complete step-by-step answer:
We will change the integral form to limit form.
We will take the upper limit as kk whose condition is kk \to \infty .
Therefore, 0x2exdx=limk0kx2exdx\int\limits_{0}^{\infty }{{{x}^{2}}{{e}^{-x}}dx}=\displaystyle \lim_{k \to \infty }\int\limits_{0}^{k}{{{x}^{2}}{{e}^{-x}}dx}.
We now try to find the definite integral form of 0kx2exdx\int\limits_{0}^{k}{{{x}^{2}}{{e}^{-x}}dx}.
We need to find the integration of x2exdx\int{{{x}^{2}}{{e}^{-x}}dx} using integration by parts method.
Integration by parts method is usually used for the multiplication of the functions and their integration.
Let’s assume f(x)=g(x)h(x)f\left( x \right)=g\left( x \right)h\left( x \right). We need to find the integration of f(x)dx=g(x)h(x)dx\int{f\left( x \right)dx}=\int{g\left( x \right)h\left( x \right)dx}.
We take u=g(x),v=h(x)u=g\left( x \right),v=h\left( x \right). This gives f(x)dx=uvdx\int{f\left( x \right)dx}=\int{uvdx}.
The theorem of integration by parts gives uvdx=uvdx(dudxvdx)dx\int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)dx}.
For our integration x2exdx\int{{{x}^{2}}{{e}^{-x}}dx}, we take u=x2,v=exu={{x}^{2}},v={{e}^{-x}}.
Now we complete the integration x2exdx=x2exdx(d(x2)dxexdx)dx\int{{{x}^{2}}{{e}^{-x}}dx}={{x}^{2}}\int{{{e}^{-x}}dx}-\int{\left( \dfrac{d\left( {{x}^{2}} \right)}{dx}\int{{{e}^{-x}}dx} \right)dx}.
We have the differentiation formula for u=x2u={{x}^{2}} where dudx=ddx(x2)=2x\dfrac{du}{dx}=\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x.
The integration formula for xndx=xn+1n+1+c\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c.
We apply these formulas to complete the integration and get
x2exdx=x2(ex)+(2x×ex)dx=x2ex+2xexdx\int{{{x}^{2}}{{e}^{-x}}dx}={{x}^{2}}\left( -{{e}^{-x}} \right)+\int{\left( 2x\times {{e}^{-x}} \right)dx}=-{{x}^{2}}{{e}^{-x}}+2\int{x{{e}^{-x}}dx}.
We again apply by parts for xexdx\int{x{{e}^{-x}}dx}
So, xexdx=x(ex)+exdx=xexex\int{x{{e}^{-x}}dx}=x\left( -{{e}^{-x}} \right)+\int{{{e}^{-x}}dx}=-x{{e}^{-x}}-{{e}^{-x}}.
The final integral form is

& \int{{{x}^{2}}{{e}^{-x}}dx} \\\ & =-{{x}^{2}}{{e}^{-x}}+2\int{x{{e}^{-x}}dx} \\\ & =-{{x}^{2}}{{e}^{-x}}+2\left( -x{{e}^{-x}}-{{e}^{-x}} \right) \\\ & =-{{e}^{-x}}\left( {{x}^{2}}+2x+2 \right) \\\ \end{aligned}$$ Now we find the definite from $$\int\limits_{0}^{k}{{{x}^{2}}{{e}^{-x}}dx}=\left[ -{{e}^{-x}}\left( {{x}^{2}}+2x+2 \right) \right]_{o}^{k}=2-{{e}^{-k}}\left( {{k}^{2}}+2k+2 \right)$$ The limit form is $$\displaystyle \lim_{k \to \infty }\int\limits_{0}^{k}{{{x}^{2}}{{e}^{-x}}dx}=\displaystyle \lim_{k \to \infty }\left[ 2-\dfrac{{{k}^{2}}+2k+2}{{{e}^{k}}} \right]$$. We have $$\displaystyle \lim_{k \to \infty }\left[ 2-\dfrac{{{k}^{2}}+2k+2}{{{e}^{k}}} \right]=2-\displaystyle \lim_{k \to \infty }\left[ \dfrac{{{k}^{2}}+2k+2}{{{e}^{k}}} \right]$$. $$\displaystyle \lim_{k \to \infty }\left[ \dfrac{{{k}^{2}}+2k+2}{{{e}^{k}}} \right]=\displaystyle \lim_{k \to \infty }\left[ \dfrac{2k+2}{{{e}^{k}}} \right]=\displaystyle \lim_{k \to \infty }\left[ \dfrac{2}{{{e}^{k}}} \right]=0$$. Therefore, the limit value of $$\displaystyle \lim_{k \to \infty }\int\limits_{0}^{k}{{{x}^{2}}{{e}^{-x}}dx}=\displaystyle \lim_{k \to \infty }\left[ 2-\dfrac{{{k}^{2}}+2k+2}{{{e}^{k}}} \right]=0$$. Therefore, the improper integral converges. **Note:** We have to be careful about the upper boundary of the integral. The choices of functions for the by parts have to be in order, so that the indices value of the ${{x}^{2}}$ reduces. We can’t take them in the opposite order.