Solveeit Logo

Question

Question: How do you determine if \(\sum {\dfrac{{{n^3}}}{{({n^4}) - 1}}} \) from \(n = 2\) to \(n = \infty \)...

How do you determine if n3(n4)1\sum {\dfrac{{{n^3}}}{{({n^4}) - 1}}} from n=2n = 2 to n=n = \infty is convergent ?

Explanation

Solution

In this question, we need to find whether the given series is convergent. Firstly, we will see the behaviour of the series given in the question and denote it by xn=n3(n4)1{x_n} = \dfrac{{{n^3}}}{{({n^4}) - 1}}. Then we consider one more series and denote it by yn=1n{y_n} = \dfrac{1}{n} . Then we apply the limit comparison test, and check whether the series is convergent or divergent.

Complete step-by-step answer:
Given the series of the form n=2n=n3(n4)1\sum\limits_{n = 2}^{n = \infty } {\dfrac{{{n^3}}}{{({n^4}) - 1}}}
We are asked to determine whether the given series is convergent or divergent.
We will apply the limit comparison test (LCT) to check the convergence.
The limit comparison test states that if xn{x_n} and yn{y_n} are series with positive terms and if limnxnyn\mathop {\lim }\limits_{n \to \infty } \dfrac{{{x_n}}}{{{y_n}}} is positive and finite. Then either both the series converge or diverge.
Let us consider the series inside the summation and denote it by xn{x_n}.
i.e. xn=n3(n4)1{x_n} = \dfrac{{{n^3}}}{{({n^4}) - 1}}
Let us now examine the behaviour of the series xn{x_n}.
For larger values of nn, the denominator n41{n^4} - 1 of the series xn{x_n} behaves like n4{n^4}.
Hence, for larger nn, the series xn{x_n} acts like,
n3n4=1n\dfrac{{{n^3}}}{{{n^4}}} = \dfrac{1}{n}
Let us consider yn=1n{y_n} = \dfrac{1}{n}.
Now we apply the limit comparison test, to examine whether the series is convergent or not.
Let us consider,
limn(xnyn)=limn(n3n411n)\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{x_n}}}{{{y_n}}}} \right) = \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\dfrac{{{n^3}}}{{{n^4} - 1}}}}{{\dfrac{1}{n}}}} \right)
Now multiplying the numerator by the reciprocal of the denominator, we get,
limn(xnyn)=limn(n3n41×n1)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{x_n}}}{{{y_n}}}} \right) = \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{n^3}}}{{{n^4} - 1}} \times \dfrac{n}{1}} \right)
This can also be written as,
limn(xnyn)=limn(n3(n1)n41)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{x_n}}}{{{y_n}}}} \right) = \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{n^3}({n^1})}}{{{n^4} - 1}}} \right)
We have the multiplication rule of exponential which is given by, acad=ac+d{a^c} \cdot {a^d} = {a^{c + d}}
We have in the numerator a=na = n, c=3c = 3 and d=1d = 1.
Hence we have,
limn(xnyn)=limn(n3+1n41)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{x_n}}}{{{y_n}}}} \right) = \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{n^{3 + 1}}}}{{{n^4} - 1}}} \right)
limn(xnyn)=limn(n4n41)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{x_n}}}{{{y_n}}}} \right) = \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{n^4}}}{{{n^4} - 1}}} \right)
We write the expression inside the parenthesis as,
n4n41=111n4\dfrac{{{n^4}}}{{{n^4} - 1}} = \dfrac{1}{{1 - \dfrac{1}{{{n^4}}}}}
So we have now,
limn(xnyn)=limn(111n4)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{x_n}}}{{{y_n}}}} \right) = \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{1}{{1 - \dfrac{1}{{{n^4}}}}}} \right)
Note that as nn \to \infty , we have 1n40\dfrac{1}{{{n^4}}} \to 0
So we obtain the limit as,
limn(xnyn)=limn(11)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{x_n}}}{{{y_n}}}} \right) = \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{1}{1}} \right)
limn(xnyn)=1\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{{x_n}}}{{{y_n}}}} \right) = 1.
Note that the limit obtained above is positive and finite. Hence, by the limit comparison test, either both the series xn{x_n} and yn{y_n} are convergent or both of them divergent.
But we have the series yn=1n{y_n} = \dfrac{1}{n} which is divergent.
So by LCT, the series xn=n3(n4)1{x_n} = \dfrac{{{n^3}}}{{({n^4}) - 1}} is also divergent.
Hence the series n=2n=n3(n4)1\sum\limits_{n = 2}^{n = \infty } {\dfrac{{{n^3}}}{{({n^4}) - 1}}} is divergent by limit comparison test.

Note:
Students must know the meaning of convergence and divergence of a series.
The nth partial sum of the series n=1an\sum\limits_{n = 1}^\infty {{a_n}} is given by Sn=a1+a2+....+an{S_n} = {a_1} + {a_2} + .... + {a_n}. If the sequence of these partial sums Sn\\{ {S_n}\\} converges to L, then the sum of the series converges to L. If Sn\\{ {S_n}\\} diverges, then the sum of the series diverges.
We must know the limit comparison test, which states that if xn{x_n} and yn{y_n} are series with positive terms and if limnxnyn\mathop {\lim }\limits_{n \to \infty } \dfrac{{{x_n}}}{{{y_n}}} is positive and finite. Then either both the series converge or diverge.