Solveeit Logo

Question

Question: How do you create a 16 point unit circle that ranges from 0 to 8pi?...

How do you create a 16 point unit circle that ranges from 0 to 8pi?

Explanation

Solution

Create the circle of range (0,2π)\left( 0,2\pi \right) instead of (0,8π)\left( 0,8\pi \right) as both are same in case of a circle and 2π2\pi is the minimum range for a circle. Plot 16 points by choosing 16 different angles. Choose the angles in such a way that their sine and cosine values are known.

Complete step by step answer:
A circle that ranges from 0 to 8π8\pi , is the same as the circle ranges from 0 to 2π2\pi because each rotation from one quadrant to another around the coordinate axes is π2\dfrac{\pi }{2}. For a complete circle it will be a complete rotation around 4 quadrants. Hence range will be π2×4=2π\dfrac{\pi }{2}\times 4=2\pi .
So, to create a circle that ranges from 0 to 8π8\pi , we have to create a circle ranging from 0 to 2π2\pi .
Now for 16 points we have to consider 16 different angles.
The sine and cosine values of the angles can be taken from the given table

angleCosine valueSine value
0{{0}^{\circ }}01
30{{30}^{\circ }}32\dfrac{\sqrt{3}}{2}12\dfrac{1}{2}
45{{45}^{\circ }}12\dfrac{1}{\sqrt{2}}12\dfrac{1}{\sqrt{2}}
60{{60}^{\circ }}12\dfrac{1}{2}32\dfrac{\sqrt{3}}{2}
90{{90}^{\circ }}10

For other angles we just have to change the sign as per the quadrant.
So, the points are
(cos0,sin0)=(1,0) (cos30,sin30)=(32,12) (cos45,sin45)=(12,12) (cos60,sin60)=(12,32) (cos90,sin90)=(0,1) (cos120,sin120)=(12,32) (cos135,sin135)=(12,12) (cos150,sin150)=(32,12) (cos180,sin180)=(1,0) (cos210,sin210)=(32,12) (cos225,sin225)=(12,12) (cos240,sin240)=(12,32) (cos270,sin270)=(0,1) (cos300,sin300)=(12,32) (cos315,sin315)=(12,12) (cos330,sin330)=(32,12) (cos360,sin360)=(1,0) \begin{aligned} & \left( \cos {{0}^{\circ }},\sin {{0}^{\circ }} \right)=\left( 1,0 \right) \\\ & \left( \cos {{30}^{\circ }},\sin {{30}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\\ & \left( \cos {{45}^{\circ }},\sin {{45}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\\ & \left( \cos {{60}^{\circ }},\sin {{60}^{\circ }} \right)=\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\\ & \left( \cos {{90}^{\circ }},\sin {{90}^{\circ }} \right)=\left( 0,1 \right) \\\ & \left( \cos {{120}^{\circ }},\sin {{120}^{\circ }} \right)=\left( -\dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\\ & \left( \cos {{135}^{\circ }},\sin {{135}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\\ & \left( \cos {{150}^{\circ }},\sin {{150}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\\ & \left( \cos {{180}^{\circ }},\sin {{180}^{\circ }} \right)=\left( -1,0 \right) \\\ & \left( \cos {{210}^{\circ }},\sin {{210}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\\ & \left( \cos {{225}^{\circ }},\sin {{225}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\\ & \left( \cos {{240}^{\circ }},\sin {{240}^{\circ }} \right)=\left( -\dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\\ & \left( \cos {{270}^{\circ }},\sin {{270}^{\circ }} \right)=\left( 0,-1 \right) \\\ & \left( \cos {{300}^{\circ }},\sin {{300}^{\circ }} \right)=\left( \dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\\ & \left( \cos {{315}^{\circ }},\sin {{315}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\\ & \left( \cos {{330}^{\circ }},\sin {{330}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\\ & \left( \cos {{360}^{\circ }},\sin {{360}^{\circ }} \right)=\left( 1,0 \right) \\\ \end{aligned}

Note:
The angels should be chosen in such a way that their sine and cosine values are known or can be obtained easily. The 16 equal angle difference i.e. 36016=22.5\dfrac{{{360}^{\circ }}}{16}={{22.5}^{\circ }}should be avoided because there will be complexity in calculation. For sine and cosine values of angles more than 90{{90}^{\circ }}, ASTC rule can be used.