Solveeit Logo

Question

Question: How do you calculate the left and right Riemann sum for the given function over the interval \(\left...

How do you calculate the left and right Riemann sum for the given function over the interval [0,ln2]\left[ 0,\ln 2 \right], using n=40n=40 for ex{{e}^{x}}?

Explanation

Solution

We find the points for left and right Riemann sum in case of interval [0,ln2]\left[ 0,\ln 2 \right], using n=40n=40 for ex{{e}^{x}}. We find the width of the rectangles. We use them in the formula of i=0n1Δxf(a+iΔx)\sum\limits_{i=0}^{n-1}{\Delta xf\left( a+i\Delta x \right)} and i=1nΔxf(a+iΔx)\sum\limits_{i=1}^{n}{\Delta xf\left( a+i\Delta x \right)} to find the solution.

Complete step by step solution:
A Riemann sum can be visualized as a division of (approximately) the area under the curve f(x)f\left( x \right) on [a,b]\left[ a,b \right] into nn adjacent rectangles spanning the interval, where the kth{{k}^{th}} rectangle has width Δx=ban\Delta x=\dfrac{b-a}{n}.
This Riemann sum can be expressed with respect to both the starting points or the ending points of the rectangles. They are divided into two parts where they are called left and right Riemann sum.
The formula for left Riemann sum is i=0n1Δxf(a+iΔx)\sum\limits_{i=0}^{n-1}{\Delta xf\left( a+i\Delta x \right)}.
The formula for left Riemann sum is i=1nΔxf(a+iΔx)\sum\limits_{i=1}^{n}{\Delta xf\left( a+i\Delta x \right)}.
We need to calculate the left and right Riemann sum for the given function over the interval [0,ln2]\left[ 0,\ln 2 \right], using n=40n=40 for ex{{e}^{x}}. Here f(x)=exf\left( x \right)={{e}^{x}}. The interval is [a,b][0,ln2]\left[ a,b \right]\equiv \left[ 0,\ln 2 \right].
We first find the width of the rectangles where Δx=ln2040=ln240\Delta x=\dfrac{\ln 2-0}{40}=\dfrac{\ln 2}{40}.
We have to find the functional values of f(a+iΔx),i=0(1)40f\left( a+i\Delta x \right),i=0(1)40.
Therefore, for f(x)=exf\left( x \right)={{e}^{x}}, we have
f(0)=e0=1f\left( 0 \right)={{e}^{0}}=1
f(0+ln240)=eln240=2140f\left( 0+\dfrac{\ln 2}{40} \right)={{e}^{\dfrac{\ln 2}{40}}}={{2}^{\dfrac{1}{40}}}
f(0+2ln240)=e2ln240=2240f\left( 0+\dfrac{2\ln 2}{40} \right)={{e}^{\dfrac{2\ln 2}{40}}}={{2}^{\dfrac{2}{40}}}
……………………
…………………….
f(0+40ln240)=eln2=2f\left( 0+\dfrac{40\ln 2}{40} \right)={{e}^{\ln 2}}=2
Now we find the left Riemann sum value where

& \sum\limits_{i=0}^{n-1}{\Delta xf\left( a+i\Delta x \right)} \\\ & =\dfrac{\ln 2}{40}\left( 1+{{2}^{\dfrac{1}{40}}}+{{2}^{\dfrac{2}{40}}}+...+{{2}^{\dfrac{39}{40}}} \right) \\\ & =\dfrac{\ln 2}{40}\times \dfrac{2-1}{{{2}^{\dfrac{1}{40}}}-1} \\\ & =\dfrac{\ln 2}{40\left( {{2}^{\dfrac{1}{40}}}-1 \right)} \\\ & =0.991 \\\ \end{aligned}$$ Now we find the right Riemann sum value where $$\begin{aligned} & \sum\limits_{i=1}^{n}{\Delta xf\left( a+i\Delta x \right)} \\\ & =\dfrac{\ln 2}{40}\left( {{2}^{\dfrac{1}{40}}}+{{2}^{\dfrac{2}{40}}}+...+2 \right) \\\ & =\dfrac{\ln 2}{40}\times \dfrac{{{2}^{\dfrac{1}{40}}}\left( 2-1 \right)}{{{2}^{\dfrac{1}{40}}}-1} \\\ & =\dfrac{{{2}^{\dfrac{1}{40}}}\ln 2}{40\left( {{2}^{\dfrac{1}{40}}}-1 \right)} \\\ & =1.008 \\\ \end{aligned}$$ **Therefore, left and right Riemann sums for the given function over the interval $\left[ 0,\ln 2 \right]$, using $n=40$ for ${{e}^{x}}$ are $0.991,1.008$ respectively.** **Note:** A Riemann sum is an approximation of a region's area, obtained by adding up the areas of multiple simplified slices of the region. It is applied in calculus to formalize the method of exhaustion, used to determine the area of a region. This process yields the integral, which computes the value of the area exactly.