Solveeit Logo

Question

Question: How do you calculate the derivative of \[\int{\sqrt{\left( {{x}^{3}}-2x+6 \right)}}dx\] from \[\left...

How do you calculate the derivative of (x32x+6)dx\int{\sqrt{\left( {{x}^{3}}-2x+6 \right)}}dx from [x2,2]\left[ {{x}^{2}},-2 \right]?

Explanation

Solution

This type of question is based on the concept of differentiation and integration. Let us consider (x32x+6)\sqrt{\left( {{x}^{3}}-2x+6 \right)} to be f(x) and g(x) be x2{{x}^{2}}. We know that ddxaxf(y)dy=f(x)\dfrac{d}{dx}\int\limits_{a}^{x}{f\left( y \right)dy=f\left( x \right)} where y is another variable and a is a constant. Here a is -2 and the variable is x2{{x}^{2}}. Therefore, we get ddxx22f(x)dx\dfrac{d}{dx}\int\limits_{{{x}^{2}}}^{-2}{f\left( x \right)dx}. Using the property of definite integral abf(x)dx=baf(x)dx\int\limits_{a}^{b}{f\left( x \right)}dx=-\int\limits_{b}^{a}{f\left( x \right)dx}, we can exchange the limits. Use the chain rule of differentiation and do necessary calculations to find the value of ddxx22(x32x+6)dx\dfrac{d}{dx}\int\limits_{{{x}^{2}}}^{-2}{\sqrt{\left( {{x}^{3}}-2x+6 \right)}dx} which is the required answer.

Complete step by step solution:
According to the question, we are asked to find the derivative of (x32x+6)dx\int{\sqrt{\left( {{x}^{3}}-2x+6 \right)}}dx from [x2,2]\left[ {{x}^{2}},-2 \right].
We have been given the function (x32x+6)\sqrt{\left( {{x}^{3}}-2x+6 \right)}.
Let us consider the function to be f(x)=(x32x+6)f\left( x \right)=\sqrt{\left( {{x}^{3}}-2x+6 \right)}. --------(1)
We know that the derivative of the integral of a function in the limits [a,x] is equal to the function with variable x.
That is ddxaxf(y)dy=f(x)\dfrac{d}{dx}\int\limits_{a}^{x}{f\left( y \right)dy=f\left( x \right)}.
From the given conditions, we get that the limit is [x2,2]\left[ {{x}^{2}},-2 \right].
The constant a=-2.
Therefore, we get
ddxx22f(x)dx\dfrac{d}{dx}\int\limits_{{{x}^{2}}}^{-2}{f\left( x \right)dx}
But the constant should be at the lower limit.
Using the property of definite integral that is abf(x)dx=baf(x)dx\int\limits_{a}^{b}{f\left( x \right)}dx=-\int\limits_{b}^{a}{f\left( x \right)}dx in the obtained expression, we get
ddxx22f(x)dx=ddx2x2f(x)dx\dfrac{d}{dx}\int\limits_{{{x}^{2}}}^{-2}{f\left( x \right)dx}=-\dfrac{d}{dx}\int\limits_{-2}^{{{x}^{2}}}{f\left( x \right)dx}
From the limits, we get that the variable is x2{{x}^{2}} and not x.
Consider g(x)=x2g\left( x \right)={{x}^{2}}.
Therefore, using the chain rule, we get
ddxx22f(x)dx=f(g(x))g(x)\dfrac{d}{dx}\int\limits_{{{x}^{2}}}^{-2}{f\left( x \right)dx}=-f\left( g\left( x \right) \right){g}'\left( x \right) -----------(2)
Let us find the differentiation of g(x).
ddx(g(x))=ddx(x2)\Rightarrow \dfrac{d}{dx}\left( g\left( x \right) \right)=\dfrac{d}{dx}\left( {{x}^{2}} \right)
Let us use the power rule of differentiation ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} to solve this.
Here, n=2.
g(x)=2x21{g}'\left( x \right)=2{{x}^{2-1}}
On further simplification, we get
g(x)=2x{g}'\left( x \right)=2x
Now, we have to find f(g(x)), that is f(x2)f\left( {{x}^{2}} \right).
f(x2)=((x2)32x2+6)\Rightarrow f\left( {{x}^{2}} \right)=\sqrt{\left( {{\left( {{x}^{2}} \right)}^{3}}-2{{x}^{2}}+6 \right)}
On further simplification, we get
f(x2)=(x62x2+6)f\left( {{x}^{2}} \right)=\sqrt{\left( {{x}^{6}}-2{{x}^{2}}+6 \right)}
On substituting in the expression (2), we get
ddxx22f(x)dx=(x62x2+6)(2x)\dfrac{d}{dx}\int\limits_{{{x}^{2}}}^{-2}{f\left( x \right)dx}=-\sqrt{\left( {{x}^{6}}-2{{x}^{2}}+6 \right)}\left( 2x \right)
On rearranging the expression, we get
ddxx22f(x)dx=2x(x62x2+6)\dfrac{d}{dx}\int\limits_{{{x}^{2}}}^{-2}{f\left( x \right)dx}=-2x\sqrt{\left( {{x}^{6}}-2{{x}^{2}}+6 \right)}
Therefore, we get ddxx22(x32x+6)dx=2x(x62x2+6)\dfrac{d}{dx}\int\limits_{{{x}^{2}}}^{-2}{\sqrt{\left( {{x}^{3}}-2x+6 \right)}dx}=-2x\sqrt{\left( {{x}^{6}}-2{{x}^{2}}+6 \right)}.
Hence, the the derivative of (x32x+6)dx\int{\sqrt{\left( {{x}^{3}}-2x+6 \right)}}dx from [x2,2]\left[ {{x}^{2}},-2 \right] is 2x(x62x2+6)-2x\sqrt{\left( {{x}^{6}}-2{{x}^{2}}+6 \right)}.

Note: We should know the properties of definite integral to solve this type of problems. We should differentiate g(x) also without which the answer is incomplete. Avoid calculation mistakes based on sign convention.