Solveeit Logo

Question

Question: How do you calculate \[\tan ({\sin ^{ - 1}}(\dfrac{2}{3}))\] ?...

How do you calculate tan(sin1(23))\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) ?

Explanation

Solution

We will use the trigonometric identitycos2+sin2=1{\cos ^2} + {\sin ^2} = 1. We will use Pythagoras theorem here to get the value i.e. know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}. So we must find sin(sin1(23))\sin ({\sin ^{ - 1}}(\dfrac{2}{3})) and cos(sin1(23))\cos ({\sin ^{ - 1}}(\dfrac{2}{3})). By the definition of the inverse function, sin(sin1(x))=x\sin ({\sin ^{ - 1}}(x)) = x for all 1x1 - 1 \leqslant x \leqslant 1.

Complete step by step answer:
According to the definition of inverse function sin(sin1(x))=x\sin ({\sin ^{ - 1}}(x)) = x. Thus, using this above definition, we get,
sin(sin1(23))=23\sin ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{3}
Next, we will calculate the value for cos function.
Also, the value ofcos(sin1(23))\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) is positive. Thus, by using Pythagoras theorem, we get
cos(sin1(23))\cos ({\sin ^{ - 1}}(\dfrac{2}{3}))
As we know that, cos2+sin2=1{\cos ^2} + {\sin ^2} = 1 and so using this trigonometry identity, we get,
cos(sin1(23))=1sin2(sin1(23))\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {1 - {{\sin }^2}({{\sin }^{ - 1}}(\dfrac{2}{3}))}
Substituting the values in the above expression, we get,
cos(sin1(23))=1(23)2\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {1 - {{(\dfrac{2}{3})}^2}}
Removing the brackets, we get,
cos(sin1(23))=149\cos ({\sin ^{ - 1}}(\dfrac{2}{3}))= \sqrt {1 - \dfrac{4}{9}}
Taking LCM 99in the denominator in the above expression, we get,
cos(sin1(23))=949\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {\dfrac{{9 - 4}}{9}}
Simplify this above expression, we get,
cos(sin1(23))=59\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {\dfrac{5}{9}}
cos(sin1(23))=532\Rightarrow \cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \sqrt {\dfrac{5}{{{3^2}}}} (9=32)(\because 9 = {3^2})
cos(sin1(23))=53\Rightarrow \cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{\sqrt 5 }}{3}
Thus, the value ofcos(sin1(23))=53\cos ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{\sqrt 5 }}{3}.

Last, we will calculate the value for tan function.So,
tan(sin1(23))\tan ({\sin ^{ - 1}}(\dfrac{2}{3}))
As we know that, tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}, we will use this in the above expression and we get,
tan(sin1(23))=sin(sin1(23))cos(sin1(23))\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{\sin ({{\sin }^{ - 1}}(\dfrac{2}{3}))}}{{\cos ({{\sin }^{ - 1}}(\dfrac{2}{3}))}}
Substituting the values in the above expression, we get,
tan(sin1(23))=2353\tan ({\sin ^{ - 1}}(\dfrac{2}{3}))= \dfrac{{\dfrac{2}{3}}}{{\dfrac{{\sqrt 5 }}{3}}}
Simplify this above expression, we get,
tan(sin1(23))=23÷53\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{3} \div \dfrac{{\sqrt 5 }}{3}
Removing the division sign and convert it into multiplication sign, we get,
tan(sin1(23))=23×35\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{3} \times \dfrac{3}{{\sqrt 5 }}
tan(sin1(23))=25\Rightarrow \tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{2}{{\sqrt 5 }}
Multiplying by 5\sqrt 5 in both the numerator and denominator, we get,
tan(sin1(23))=25×55\tan ({\sin ^{ - 1}}(\dfrac{2}{3}))= \dfrac{2}{{\sqrt 5 }} \times \dfrac{{\sqrt 5 }}{{\sqrt 5 }}
tan(sin1(23))=255\therefore \tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{2\sqrt 5 }}{5}.............(5×5=5)(\because \sqrt 5 \times \sqrt 5 = 5)

Hence, the value of tan(sin1(23))=255\tan ({\sin ^{ - 1}}(\dfrac{2}{3})) = \dfrac{{2\sqrt 5 }}{5}.

Note: The expression sin1(x){\sin ^{ - 1}}(x) is not the same as 1sin(x)\dfrac{1}{{\sin (x)}}. In other words, 1 - 1 is not an exponent. Instead, it simply means inverse function. The trigonometric functions sinx, cosx and tanx can be used to find an unknown side length of a right triangle, if one side length and an angle measure are known. The inverse trigonometric functions sin1x,cos1x,tan1x{\sin ^{ - 1}}x,{\cos ^{^{ - 1}}}x,{\tan ^{ - 1}}x, are used to find the unknown measure of an angle of a right triangle when two side lengths are known.