Solveeit Logo

Question

Question: How do you calculate \(\left( {{\tan }^{-1}}\left( 2 \right) \right)\) ?...

How do you calculate (tan1(2))\left( {{\tan }^{-1}}\left( 2 \right) \right) ?

Explanation

Solution

In this problem we have to calculate the (tan1(2))\left( {{\tan }^{-1}}\left( 2 \right) \right). We will use 11+x2=1x2+x4x6+.....\dfrac{1}{1+{{x}^{2}}}=1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+..... formula for this problem. We will integrate the above equation and simplify the obtained equation. We know that 11+x2dx=tan1x+C\int{\dfrac{1}{1+{{x}^{2}}}}dx={{\tan }^{-1}}x+C . Here we need to calculate the value of tan12{{\tan }^{-1}}2, which does not satisfy the condition 1x1-1\le x\le 1. So, we will use the trigonometric formula tan1x=π2tan1(1x){{\tan }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{x} \right). So here we will get x=12x=\dfrac{1}{2} which satisfies 1x1-1\le x\le 1. Now we can use the integration value and use the Tylor series to get the result.

Formula used:
1. 11+x2=1x2+x4x6+.....\dfrac{1}{1+{{x}^{2}}}=1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+.....
2. 11+x2dx=tan1x+C\int{\dfrac{1}{1+{{x}^{2}}}}dx={{\tan }^{-1}}x+C
3. tan1x=π2tan1(1x){{\tan }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{x} \right)
4. xndx=xn+1n+1+C\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C

Complete Step by Step Procedure:
Given that, (tan1(2))\left( {{\tan }^{-1}}\left( 2 \right) \right)
Consider the equation
11+x2=1x2+x4x6+.....\dfrac{1}{1+{{x}^{2}}}=1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+.....
Integrating the above equation with respect to xx, then we will get
11+x2dx=(1x2+x4x6+.....)dx\int{\dfrac{1}{1+{{x}^{2}}}dx=\int{\left( 1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+..... \right)dx}}
We know that 11+x2dx=tan1x+C\int{\dfrac{1}{1+{{x}^{2}}}}dx={{\tan }^{-1}}x+C and using the formula xndx=xn+1n+1+C\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C in the above equation, then we will get
tan1(x)=xx33+x55x77+.....{{\tan }^{-1}}\left( x \right)=x-\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}-\dfrac{{{x}^{7}}}{7}+.....
The above formula can be used when 1x1-1\le x\le 1. But in this problem, we have to calculate the value of tan12{{\tan }^{-1}}2, where x=2x=2 and x>2x>2. So here we can’t use the above formula directly.
We have trigonometric equation i.e.,
tan1x=π2tan1(1x){{\tan }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{x} \right)
Substituting x=2x=2 in the above equation, then we will get
tan1(2)=π2tan1(12)....(i)\Rightarrow {{\tan }^{-1}}(2)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{2} \right)....\left( \text{i} \right)
Now we will calculate the value of tan1(12){{\tan }^{-1}}\left( \dfrac{1}{2} \right) by using the above integration value.
Substituting the x=12x=\dfrac{1}{2}in the integration value, then we will get
tan1(12)=1218×4+132×51128×7+....{{\tan }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{1}{2}-\dfrac{1}{8\times 4}+\dfrac{1}{32\times 5}-\dfrac{1}{128\times 7}+....
Simplifying the above equation, then we will get
tan1(12)=0.463467\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2} \right)=0.463467
Now substitute tan1(12)=0.463467{{\tan }^{-1}}\left( \dfrac{1}{2} \right)=0.463467in the equation (i)\left( \text{i} \right), then we will get
tan1(2)=π2tan1(12) tan1(2)=π20.463467 \begin{aligned} & \Rightarrow {{\tan }^{-1}}\left( 2 \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( 2 \right)=\dfrac{\pi }{2}-0.463467 \\\ \end{aligned}
Substituting the value of π=3.14\pi =3.14 in the above equation, then we will get
tan1(2)=1.520.463467 tan1(2)=1.107329 \begin{aligned} & \Rightarrow {{\tan }^{-1}}\left( 2 \right)=1.52-0.463467 \\\ & \Rightarrow {{\tan }^{-1}}\left( 2 \right)=1.107329 \\\ \end{aligned}
In the above equation we have the result in the radians. To convert the radians into degrees we will multiply above value with 180π\dfrac{180}{\pi },then

**$\begin{aligned}
& {{\tan }^{-1}}\left( 2 \right)=\dfrac{180}{\pi }\times 1.107329 \\

& {{\tan }^{-1}}\left( 2 \right)=63.4452{}^\circ \\
\end{aligned}$**

Note:
In the above problem, we have calculated the value of tan1x{{\tan }^{-1}}x from the Tylor series. But it can be easier to use a scientific calculator to find the value of tan1x{{\tan }^{-1}}x. Because there is a drawback with this series. The series can only give the value of tan1x{{\tan }^{-1}}x where 1x1-1\le x\le 1. For other values, we need to use some trigonometric identities and solve the problem according to the previous step.