Solveeit Logo

Question

Question: How do you calculate \[{{\cos }^{-1}}\left[ \cos \left( \dfrac{7\pi }{6} \right) \right]\]?...

How do you calculate cos1[cos(7π6)]{{\cos }^{-1}}\left[ \cos \left( \dfrac{7\pi }{6} \right) \right]?

Explanation

Solution

The given expression is of the form of the function f(g(x))f(g(x)), here f(x)=cos1(x)&g(x)=cos(x)f(x)={{\cos }^{-1}}(x)\And g(x)=\cos (x). To find the value of f(g(x))f(g(x)) at x=ax=a, we first need to find the value of g(a)g(a), and then find the value of f(x)f(x) at x=g(a)x=g(a). We will do the same for the given function.

Complete step by step answer:
We are asked to find the value of cos1[cos(7π6)]{{\cos }^{-1}}\left[ \cos \left( \dfrac{7\pi }{6} \right) \right]. Let there be a function cos1(cosx){{\cos }^{-1}}\left( \cos x \right), we need to find the value of this function at x=7π6x=\dfrac{7\pi }{6}. As this is the function of the form f(g(x))f(g(x)), here f(x)=cos1(x)&g(x)=cos(x)f(x)={{\cos }^{-1}}(x)\And g(x)=\cos (x). We first need to find the value of g(x)=cos(x)g(x)=\cos (x), at x=7π6x=\dfrac{7\pi }{6}.
cos(7π6)=cos(π+π6)\cos \left( \dfrac{7\pi }{6} \right)=\cos \left( \pi +\dfrac{\pi }{6} \right)
cos(π6)=32\Rightarrow -\cos \left( \dfrac{\pi }{6} \right)=-\dfrac{\sqrt{3}}{2}
Now that we have the value of g(x)=cos(x)g(x)=\cos (x), at x=7π6x=\dfrac{7\pi }{6}. We have to find the value of f(x)=cos1(x)f(x)={{\cos }^{-1}}(x), at x=cos(7π6)=32x=\cos \left( \dfrac{7\pi }{6} \right)=-\dfrac{\sqrt{3}}{2}. By doing this we get
cos1(32)\Rightarrow {{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)
We know that the inverse trigonometric function gives the value of the angle in their principal range. The principal range of the inverse cosine function is [0,π]\left[ 0,\pi \right].
We have to find the value of cos1(32){{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right), let the value of cos1(32){{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right) is yy, yyis an angle in the principal range of cosine inverse function.
y=cos1(32)\Rightarrow y={{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)
Taking cos\cos of both sides, we get
cos(y)=cos(cos1(32))\Rightarrow \cos \left( y \right)=\cos \left( {{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right) \right)
cos(y)=32\Rightarrow \cos \left( y \right)=-\dfrac{\sqrt{3}}{2}
We know that yy is an angle in the range of [0,π]\left[ 0,\pi \right], whose cosine gives the value 32-\dfrac{\sqrt{3}}{2}. There is only one such angle, and that is 5π6\dfrac{5\pi }{6}

& \therefore y=\dfrac{5\pi }{6} \\\ & \therefore y={{\cos }^{-1}}\left[ \cos \left( \dfrac{7\pi }{6} \right) \right]=\dfrac{5\pi }{6} \\\ \end{aligned}$$ **Note:** We can use this question to make a general property, as the angle $$\dfrac{7\pi }{6}$$ is a third quadrant angle, it can be expressed as $$\pi +\theta $$. We can find the value of $$\theta $$, by comparing it with the given angle. $$\begin{aligned} & \Rightarrow \pi +\theta =\dfrac{7\pi }{6} \\\ & \Rightarrow \pi +\theta -\pi =\dfrac{7\pi }{6}-\pi \\\ & \therefore \theta =\dfrac{\pi }{6} \\\ \end{aligned}$$ Hence, the value of $${{\cos }^{-1}}\left[ \cos \left( x \right) \right]$$ equals $$\pi -\theta $$, $$x$$ is a third quadrant angle, of the form $$\pi +\theta $$.