Solveeit Logo

Question

Question: How do you approximate \({{\log }_{5}}50\) given \({{\log }_{5}}2=0.4307\) and \({{\log }_{5}}3=0.68...

How do you approximate log550{{\log }_{5}}50 given log52=0.4307{{\log }_{5}}2=0.4307 and log53=0.6826?{{\log }_{5}}3=0.6826?

Explanation

Solution

We use the properties of logarithm to solve this problem. An important rule we will be using is logna=logalogn.{{\log }_{n}}a=\dfrac{\log a}{\log n}. Another rule we will be using is logan=nloga.\log {{a}^{n}}=n\log a. Also, we will use logamn=logam+logan.{{\log }_{a}}mn={{\log }_{a}}m+{{\log }_{a}}n.

Complete step by step solution:
Let us consider the logarithmic value we are asked to find, log550{{\log }_{5}}50
Also, we are given with the values, log52=0.4307{{\log }_{5}}2=0.4307 and log53=0.6826.{{\log }_{5}}3=0.6826.
We can solve this problem without using the value log53=0.6826.{{\log }_{5}}3=0.6826.
That is, we can find the value of log550{{\log }_{5}}50 only with the help of log52.{{\log }_{5}}2.
We know that 50=2×25.50=2\times 25.
So, we can write log550=log52×25.{{\log }_{5}}50={{\log }_{5}}2\times 25.
Now, we are using the property given as logamn=logam+logan.{{\log }_{a}}mn={{\log }_{a}}m+{{\log }_{a}}n.
We are going to apply this in the above written equation.
Then we get the following,
log550=log52×25=log52+log525.\Rightarrow {{\log }_{5}}50={{\log }_{5}}2\times 25={{\log }_{5}}2+{{\log }_{5}}25.
Now we will apply the value which we are given with in the above obtained equation.
That is, log52=0.4307.{{\log }_{5}}2=0.4307.
Then we will get,
log550=log52×25=0.4307+log525.\Rightarrow {{\log }_{5}}50={{\log }_{5}}2\times 25=0.4307+{{\log }_{5}}25.
Now, in the above equation, we do not have what the value of log525{{\log }_{5}}25 is.
We know that 25=52.25={{5}^{2}}.
So, we will get, log525=log552.{{\log }_{5}}25={{\log }_{5}}{{5}^{2}}.
Let us apply this in our equation, we get
log550=log52×25=0.4307+log552.\Rightarrow {{\log }_{5}}50={{\log }_{5}}2\times 25=0.4307+{{\log }_{5}}{{5}^{2}}.
Now, we will use the property of logarithm lognam=mlogna.{{\log }_{n}}{{a}^{m}}=m{{\log }_{n}}a.
When we use this property, we will get log552=2log55.{{\log }_{5}}{{5}^{2}}=2{{\log }_{5}}5.
Let us substitute this value in the equation we obtained.
Then we will get,
log550=0.4307+2log55.\Rightarrow {{\log }_{5}}50=0.4307+2{{\log }_{5}}5.
And we will use a rule given as logmn=lognlogm{{\log }_{m}}n=\dfrac{\log n}{\log m} in the equation.
Thus, we will get log55=log5log5{{\log }_{5}}5=\dfrac{\log 5}{\log 5}
Now, we are going to apply this in our equation.
We will get,
log550=0.4307+2log5log5.\Rightarrow {{\log }_{5}}50=0.4307+\dfrac{2\log 5}{\log 5}.
We are cancelling log5,\log 5,
log550=0.4307+2.\Rightarrow {{\log }_{5}}50=0.4307+2.
So,
log550=2.4307.\Rightarrow {{\log }_{5}}50=2.4307.
Hence, the actual value of log550=2.4307.{{\log }_{5}}50=2.4307.

Note: What we found is the exact value of log550.{{\log }_{5}}50. By using both the logarithmic values given we can approximate log550{{\log }_{5}}50 to 2.4054.2.4054.
Consider 503×16=3×24=48.50\to 3\times 16=3\times {{2}^{4}}=48.
So, we get log550log53+log524=log53+4log52.{{\log }_{5}}50\approx {{\log }_{5}}3+{{\log }_{5}}{{2}^{4}}={{\log }_{5}}3+4{{\log }_{5}}2.
Applying the values, log550log53+4log52=0.6826+4×0.4307=0.6826+1.7228=2.4054.\Rightarrow {{\log }_{5}}50\approx {{\log }_{5}}3+4{{\log }_{5}}2=0.6826+4\times 0.4307=0.6826+1.7228=2.4054.
The error is 2.43072.4054=0.0253.2.4307-2.4054=0.0253.