Solveeit Logo

Question

Question: How do you apply the double angle formula for \(\sin 8x\cos 8x\)?...

How do you apply the double angle formula for sin8xcos8x\sin 8x\cos 8x?

Explanation

Solution

This problem deals with solving the given equation with trigonometric identities and compound sum angles of trigonometric functions. A compound angle formula or addition formula is a trigonometric identity which expresses a trigonometric function of (A+B)\left( {A + B} \right) or (AB)\left( {A - B} \right)in terms of trigonometric functions of AA and BB.

Formula Used:
sin(A+B)=sinAcosB+cosAsinB\Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B
cos(A+B)=cosAcosBsinAsinB\Rightarrow \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B
Here when A=B,A = B, then sin(A+B)=sin2A\sin \left( {A + B} \right) = \sin 2A, then it is called as the double angle, its formula is given by:
sin(A+A)=sinAcosA+cosAsinA\Rightarrow \sin \left( {A + A} \right) = \sin A\cos A + \cos A\sin A
sin(2A)=2sinAcosA\therefore \sin \left( {2A} \right) = 2\sin A\cos A
Where the double angle for cosine is given by cos(A+B)=cos2A\cos \left( {A + B} \right) = \cos 2A, which is expressed below:
cos(A+A)=cosAcosAsinAsinA\Rightarrow \cos \left( {A + A} \right) = \cos A\cos A - \sin A\sin A
cos(2A)=cos2Asin2A\therefore \cos \left( {2A} \right) = {\cos ^2}A - {\sin ^2}A

Complete step-by-step answer:
The given expression is sin8xcos8x\sin 8x\cos 8x, consider this as given below:
sin8xcos8x\Rightarrow \sin 8x\cos 8x
Consider sin(8x)\sin \left( {8x} \right), we know that from the double angle formula, it can be written as given below:
sin(8x)=sin(4x+4x)\Rightarrow \sin \left( {8x} \right) = \sin \left( {4x + 4x} \right)
Now applying the double angle formula to the given expression, as shown:
The expression for sin(8x)\sin \left( {8x} \right) can be written as sin(2(4x))\sin \left( {2\left( {4x} \right)} \right).
sin(2(4x))=2sin4xcos4x\Rightarrow \sin \left( {2\left( {4x} \right)} \right) = 2\sin 4x\cos 4x
Now consider cos(8x)\cos \left( {8x} \right), we know that from the double angle formula, it can be written as given below:
cos(8x)=cos(4x+4x)\Rightarrow \cos \left( {8x} \right) = \cos \left( {4x + 4x} \right)
Now applying the double angle formula to the given expression, as shown:
The expression for cos(8x)\cos \left( {8x} \right) can be written as cos(2(4x))\cos \left( {2\left( {4x} \right)} \right).
cos(2(4x))=cos24xsin24x\Rightarrow \cos \left( {2\left( {4x} \right)} \right) = {\cos ^2}4x - {\sin ^2}4x
Now substituting the above expressions, in the given expression sin8xcos8x\sin 8x\cos 8x as shown below:
sin8xcos8x=(2sin4xcos4x)(cos24xsin24x)\Rightarrow \sin 8x\cos 8x = \left( {2\sin 4x\cos 4x} \right)\left( {{{\cos }^2}4x - {{\sin }^2}4x} \right)
Now simplifying the above expression, as given below:
sin8xcos8x=2[(sin4xcos4x)(cos2(4x))(sin4xcos4x)(sin2(4x))]\Rightarrow \sin 8x\cos 8x = 2\left[ {\left( {\sin 4x\cos 4x} \right)\left( {{{\cos }^2}\left( {4x} \right)} \right) - \left( {\sin 4x\cos 4x} \right)\left( {{{\sin }^2}\left( {4x} \right)} \right)} \right]
sin8xcos8x=2[sin4xcos34xsin34xcos4x]\therefore \sin 8x\cos 8x = 2\left[ {\sin 4x{{\cos }^3}4x - {{\sin }^3}4x\cos 4x} \right]

Final Answer: The expression sin8xcos8x\sin 8x\cos 8x is equal to 2[sin4xcos34xsin34xcos4x]2\left[ {\sin 4x{{\cos }^3}4x - {{\sin }^3}4x\cos 4x} \right].

Note:
Please note that the formula of cosine compound angles formula is used to solve this problem. But there are a few other trigonometric compound angle formulas of sine, cosine and tangent, here the double angle formulas for sine, cosine and tangent are also given below:
sin(2A)=2sinAcosA\Rightarrow \sin \left( {2A} \right) = 2\sin A\cos A
cos(2A)=cos2Asin2A\Rightarrow \cos \left( {2A} \right) = {\cos ^2}A - {\sin ^2}A
tan(A+B)=tanA+tanB1tanAtanB\Rightarrow \tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
tan(2A)=2tanA1tan2A\therefore \tan \left( {2A} \right) = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}