Solveeit Logo

Question

Question: How do we convert \[{\text{ 1 }}g/c{m^3}{\text{ to }}kg/{m^3}?\]...

How do we convert  1 g/cm3 to kg/m3?{\text{ 1 }}g/c{m^3}{\text{ to }}kg/{m^3}?

Explanation

Solution

In order to solve this question, we need to understand that we need to convert the given units in S.I. unit, we have to convert it in kg/m3kg/{m^3}, so we will use some basic conversion as 1 kg=1000 g and 1 m=100 cm, by using it we will get the required answer.

Complete step by step solution:
Dimensions of Density are M L3M{\text{ }}{L^{ - 3}}
We know that,
1 kg=1000 g
1 m= 100 cm
So simultaneously we have:
1 g = 11000 kg 103 kg{\text{1 g = }}\dfrac{1}{{1000}}{\text{ kg }} \Rightarrow {\text{1}}{{\text{0}}^{ - 3}}{\text{ }}kg
1 cm = 1100 m102 m{\text{1 cm = }}\dfrac{1}{{100}}{\text{ m}} \Rightarrow {10^{ - 2}}{\text{ m}}
Let us convert it to a standard unit kg/m3kg/{m^3} by the use of conversion terms shown above.
 1 gcm3 \Rightarrow {\text{ 1 }}\dfrac{g}{{c{m^3}}}{\text{ }}
1×1 g1 cm3\Rightarrow {\text{1}} \times \dfrac{{1{\text{ }}g}}{{1{\text{ }}c{m^3}}}
1×1 g(1 cm)3\Rightarrow {\text{1}} \times \dfrac{{1{\text{ }}g}}{{{{\left( {1{\text{ }}cm} \right)}^3}}}
Conversion takes place,
1×103 kg(102 m)3\Rightarrow {\text{1}} \times \dfrac{{{{10}^{ - 3}}{\text{ k}}g}}{{{{\left( {{{10}^{ - 2}}{\text{ }}m} \right)}^3}}}
Solving the denominator term,
1×103 kg106 m3\Rightarrow {\text{1}} \times \dfrac{{{{10}^{ - 3}}{\text{ k}}g}}{{{{10}^{ - 6}}{\text{ }}{{\text{m}}^3}}}
Solving numerator and denominator we get,
1×103 kgm3\Rightarrow {\text{1}} \times \dfrac{{{{10}^3}{\text{ k}}g}}{{{{\text{m}}^3}}}
103× kgm3\Rightarrow {10^3} \times \dfrac{{{\text{ k}}g}}{{{{\text{m}}^3}}}
103 kg/m3\therefore {10^3}{\text{ kg/}}{{\text{m}}^3}

Note:
It should be remembered that Conversion of units is the measure of transforming the particular measurement of any specific physical quantity into one form of units. A g is a short form of grams and kg is a short form of a kilogram. A gram and a kilogram are a unit of mass in the international system of units. Students must follow the basic steps. There are formulas for direct conversion from one unit to another which can be used as well.