Question
Question: How do identify the important parts of \(y = - 7{x^2}\) to graph it?...
How do identify the important parts of y=−7x2 to graph it?
Solution
We have to find the properties of the given parabola. First rewrite the equation in vertex form. Next, use the vertex form of parabola, to determine the values of a, h, and k. Next, find the vertex and the distance from the vertex to the focus. Then, find the focus, axis of symmetry and directrix. Use the properties of the parabola to analyse and graph the parabola. Select a few x values, and plug them into the equation to find the corresponding y values. The x values should be selected around the vertex. Graph the parabola using its properties and the selected points.
Formula used:
Vertex form of a parabola: a(x+d)2+e
d=2ab
e=c−4ab2
Vertex form: y=a(x−h)2+k
Vertex: (h,k)
p=4a1
Focus: (h,k+p)
Directrix: y=k−p
Complete step by step answer:
We have to find the properties of the given parabola.
So, first rewrite the equation in vertex form.
For this, complete the square for −7x2.
Use the form ax2+bx+c, to find the values of a, b, and c.
a=−7,b=0,c=0
Consider the vertex form of a parabola.
a(x+d)2+e
Now, substitute the values of a and b into the formula d=2ab.
d=2(−7)0
Simplify the right side.
⇒d=0
Find the value of e using the formula e=c−4ab2.
e=0−4(−7)02
⇒e=0
Now, substitute the values of a, d, and e into the vertex form a(x+d)2+e.
−7x2
Set y equal to the new right side.
y=−7x2
Now, use the vertex form, y=a(x−h)2+k, to determine the values of a, h, and k.
a=−7
h=0
k=0
Since the value of a is negative, the parabola opens down.
Opens Down
Find the vertex (h,k).
(0,0)
Now, find p, the distance from the vertex to the focus.
Find the distance from the vertex to a focus of the parabola by using the following formula.
4a1
Substitute the value of a into the formula.
4(−7)1
Multiply 4 by −7, we get
⇒−281
Find the focus.
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Now, substitute the known values of h, p, and k into the formula and simplify.
(0,−281)
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=0
Find the directrix.
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k−p
Now, substitute the known values of p and k into the formula and simplify.
y=281
Use the properties of the parabola to analyse and graph the parabola.
Direction: Opens Down
Vertex: (0,0)
Focus: (0,−281)
Axis of Symmetry: x=0
Directrix: y=281
Select a few x values, and plug them into the equation to find the corresponding y values. The x values should be selected around the vertex.
Replace the variable x with −1 in the expression.
f(−1)=−7(−1)2
Simplify the result.
f(−1)=−7
The final answer is −7.
The y value at x=−1 is −7.
y=−7
Replace the variable x with −2 in the expression.
f(−2)=−7(−2)2
Simplify the result.
f(−2)=−28
The final answer is −28.
The y value at x=−2 is −28.
y=−28
Replace the variable x with 1 in the expression.
f(1)=−7(1)2
Simplify the result.
f(1)=−7
The final answer is −7.
The y value at x=1 is −7.
y=−7
Replace the variable x with 2 in the expression.
f(2)=−7(2)2
Simplify the result.
f(2)=−28
The final answer is −28.
The y value at x=2 is −28.
y=−28
x | y |
---|---|
−2 | −28 |
−1 | −7 |
0 | 0 |
1 | −7 |
2 | −28 |
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex: (0,0)
Focus: (0,−281)
Axis of Symmetry: x=0
Directrix: y=281
x | y |
---|---|
−2 | −28 |
−1 | −7 |
0 | 0 |
1 | −7 |
2 | −28 |
Note: Graph of y=7x2 will open upwards with vertex at centre, focus at (0,281), axis of symmetry x=0 and directrix y=−281. It means a mirror image of y=−7x2.