Solveeit Logo

Question

Question: How do I use Taylor expansion to show that \[{{e}^{i\theta }}=\cos \left( \theta \right)+i\sin \left...

How do I use Taylor expansion to show that eiθ=cos(θ)+isin(θ){{e}^{i\theta }}=\cos \left( \theta \right)+i\sin \left( \theta \right)?
Using this, what is the value of eiπ+1{{e}^{i\pi }}+1?

Explanation

Solution

In this problem there is no line x=ax=a is given so we assume that the given equation will pass through the origin.So we will use maclaurin series to expand eiθ{{e}^{i\theta }}.After expanding eiθ{{e}^{i\theta }} we will simplify or rearrange the terms in such a way that we will arrive at the solution . Here we have to write the series for cosθ\cos \theta and sinθ\sin \theta so that if we arrive at that series we will substitute with them.

Complete step by step answer:
First we have to know both Taylor expansion and maclaurin series.
We can write taylor expansion of function f(x)f\left( x \right) about x=ax=a as
f(x)=n=0f(n)(a)n!(xa)nf\left( x \right)=\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{\left( n \right)}}\left( a \right)}{n!}}{{\left( x-a \right)}^{n}}
f(a)+f(a)(xa)+f(a)2!(xa)2+f(a)3!(xa)3+.....\Rightarrow f\left( a \right)+f'\left( a \right)\left( x-a \right)+\dfrac{f''\left( a \right)}{2!}{{\left( x-a \right)}^{2}}+\dfrac{f'''\left( a \right)}{3!}{{\left( x-a \right)}^{3}}+.....
If the function f(x)f\left( x \right) is about then it is called as Maclaurin Series
The Maclaurin series is given by
f(x)=n=0f(n)(0)n!(x)nf\left( x \right)=\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{\left( n \right)}}\left( 0 \right)}{n!}}{{\left( x \right)}^{n}}
f(0)+f(0)x+f(0)2!(x)2+f(0)3!(x)3+.....\Rightarrow f\left( 0 \right)+f'\left( 0 \right)x+\dfrac{f''\left( 0 \right)}{2!}{{\left( x \right)}^{2}}+\dfrac{f'''\left( 0 \right)}{3!}{{\left( x \right)}^{3}}+.....
Now as our equation is passing through we write the maclaurin series for eiθ{{e}^{i\theta }}.
As we already said we must know the series for both cosθ\cos \theta and sinθ\sin \theta .
So the maclaurin series are
ex=1+x+x22!+x33!+x44!+x55!+....{{e}^{x}}=1+x+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{4}}}{4!}+\dfrac{{{x}^{5}}}{5!}+....
sinx=xx33!+x55!+x77!+x99!+.....\sin x=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}+\dfrac{{{x}^{7}}}{7!}+\dfrac{{{x}^{9}}}{9!}+.....
cosx=1x22!+x44!+x66!+x88!+.....\cos x=1-\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}+\dfrac{{{x}^{6}}}{6!}+\dfrac{{{x}^{8}}}{8!}+.....
So, these are the three maclaurin series that we will use in our problem. These series are obtained by substituting the values in the above formulas given.
Now , our problem is to prove eiθ=cos(θ)+isin(θ){{e}^{i\theta }}=\cos \left( \theta \right)+i\sin \left( \theta \right)
We already have the series of ex{{e}^{x}} so the series of eiθ{{e}^{i\theta }} will be obtained by substituting the iΘi\Theta in place of xx then the series will look like
eiθ=1+iθ+iθ22!+iθ33!+iθ44!+iθ55!+....{{e}^{i\theta }}=1+i\theta +\dfrac{i{{\theta }^{2}}}{2!}+\dfrac{i{{\theta }^{3}}}{3!}+\dfrac{i{{\theta }^{4}}}{4!}+\dfrac{i{{\theta }^{5}}}{5!}+....
As we all know that i2=1{{i}^{2}}=1 so ii in even terms will become 1 then
1+iθθ22!iθ33!+θ44!+iθ55!θ66!+.....\Rightarrow 1+i\theta -\dfrac{{{\theta }^{2}}}{2!}-\dfrac{i{{\theta }^{3}}}{3!}+\dfrac{{{\theta }^{4}}}{4!}+\dfrac{i{{\theta }^{5}}}{5!}-\dfrac{{{\theta }^{6}}}{6!}+.....
\Rightarrow \left\\{ 1-\dfrac{{{\theta }^{2}}}{2!}+\dfrac{{{\theta }^{4}}}{4!}-\dfrac{{{\theta }^{6}}}{6!}+... \right\\}+\left\\{ i\theta -\dfrac{i{{\theta }^{3}}}{3!}+\dfrac{i{{\theta }^{5}}}{5!}+.... \right\\}
Now taking iicommon from second term then
\Rightarrow \left\\{ 1-\dfrac{{{\theta }^{2}}}{2!}+\dfrac{{{\theta }^{4}}}{4!}-\dfrac{{{\theta }^{6}}}{6!}+... \right\\}+i\left\\{ \theta -\dfrac{{{\theta }^{3}}}{3!}+\dfrac{{{\theta }^{5}}}{5!}+.... \right\\}
We already have cosx\cos x and sinx\sin x series by substituting θ\theta in the series
sinθ=θθ33!+θ55!+θ77!+θ99!+.....\sin \theta =\theta -\dfrac{{{\theta }^{3}}}{3!}+\dfrac{{{\theta }^{5}}}{5!}+\dfrac{{{\theta }^{7}}}{7!}+\dfrac{{{\theta }^{9}}}{9!}+.....
cosθ=1θ22!+θ44!+θ66!+θ88!+.....\cos \theta =1-\dfrac{{{\theta }^{2}}}{2!}+\dfrac{{{\theta }^{4}}}{4!}+\dfrac{{{\theta }^{6}}}{6!}+\dfrac{{{\theta }^{8}}}{8!}+.....
Here we can observe the cosΘ\cos \Theta and sinΘ\sin \Theta series same as in our equation so we substitute these in that terms place
cosθ+isinθ\Rightarrow \cos \theta +i\sin \theta
Hence we have proved
eiθcosθ+isinθ{{e}^{i\theta }}\Rightarrow \cos \theta +i\sin \theta
Now using this we have to get the value of eiπ+1{{e}^{i\pi }}+1
So we get
eiπ=cosπ+isinπ{{e}^{i\pi }}=\cos \pi +i\sin \pi
As we already know the values of cosπ=1\cos \pi =-1 and sinπ=0\sin \pi =0
1+0\Rightarrow -1+0
So, we get
eiπ+1=0{{e}^{i\pi }}+1=0
The value of eiπ+1{{e}^{i\pi }}+1 is 0

Note:
We can solve this question in this way or we directly have an identity called Euler’s identity. Using that we can solve the problem easily. We also have to know the taylor and maclaurin series formulas to solve this question.