Solveeit Logo

Question

Question: How do I use DeMoivre's theorem to find out \[{{\left( -3+3i \right)}^{3}}\]?...

How do I use DeMoivre's theorem to find out (3+3i)3{{\left( -3+3i \right)}^{3}}?

Explanation

Solution

To solve this complex expression, first assume z=3+3iz=-3+3i and then change this complex number into trigonometric form that is z=ρ[cos(θ)+isin(θ)]z=\rho \left[ \cos \left( \theta \right)+i\sin \left( \theta \right) \right] and then apply DeMoivre’s theorem which is zn=ρn[cos(nθ)+isin(nθ)]{{z}^{n}}={{\rho }^{n}}\left[ \cos \left( n\theta \right)+i\sin \left( n\theta \right) \right] to get the value of z3=(3+3i)3{{z}^{3}}={{\left( -3+3i \right)}^{3}}.

Complete step by step solution:
Let us suppose given complex number to be as follows:
z=3+3iz=-3+3i
z3=(3+3i)3\Rightarrow {{z}^{3}}={{\left( -3+3i \right)}^{3}}
To change this complex number into trigonometric form that is
z=ρ[cos(θ)+isin(θ)]...(1)z=\rho \left[ \cos \left( \theta \right)+i\sin \left( \theta \right) \right]...\left( 1 \right)
we need to find the value of θ\theta and ρ\rho . We know that ρ=(x)2+(y)2\rho =\sqrt{{{\left( x \right)}^{2}}+{{\left( y \right)}^{2}}}here x=3x=-3 and y=3y=3. After applying these values, we get:
ρ=(3)2+(3)2\Rightarrow \rho =\sqrt{{{\left( -3 \right)}^{2}}+{{\left( 3 \right)}^{2}}}
ρ=9+9\Rightarrow \rho =\sqrt{9+9}
ρ=32\Rightarrow \rho =3\sqrt{2}
To find the value of θ\theta formula is θ=arctan(yx)\theta =\arctan \left( \dfrac{y}{x} \right) here x=3x=-3 and y=3y=3. After applying these values, we get:
θ=arctan(33)\Rightarrow \theta =\arctan \left( \dfrac{3}{-3} \right)
θ=arctan(1)\Rightarrow \theta =\arctan \left( -1 \right)
θ=3π4\Rightarrow \theta =\dfrac{3\pi }{4}
Now substitute the value of θ\theta and ρ\rho in equation (1)\left( 1 \right) to convert in trigonometry form we get:
z=32[cos(3π4)+isin(3π4)]\Rightarrow z=3\sqrt{2}\left[ \cos \left( \dfrac{3\pi }{4} \right)+i\sin \left( \dfrac{3\pi }{4} \right) \right]
And apply DeMoivre’s theorem which is zn=ρn[cos(nθ)+isin(nθ)]{{z}^{n}}={{\rho }^{n}}\left[ \cos \left( n\theta \right)+i\sin \left( n\theta \right) \right] in equation z3=(3+3i)3{{z}^{3}}={{\left( -3+3i \right)}^{3}} we get:
z3=(32)3[cos(33π4)+isin(33π4)]\Rightarrow {{z}^{3}}={{\left( 3\sqrt{2} \right)}^{3}}\left[ \cos \left( 3\cdot \dfrac{3\pi }{4} \right)+i\sin \left( 3\cdot \dfrac{3\pi }{4} \right) \right]
z3=(32)3[cos(9π4)+isin(9π4)]\Rightarrow {{z}^{3}}={{\left( 3\sqrt{2} \right)}^{3}}\left[ \cos \left( \dfrac{9\pi }{4} \right)+i\sin \left( \dfrac{9\pi }{4} \right) \right]
z3=542[cos(9π4)+isin(9π4)]\Rightarrow {{z}^{3}}=54\sqrt{2}\left[ \cos \left( \dfrac{9\pi }{4} \right)+i\sin \left( \dfrac{9\pi }{4} \right) \right]
We can further split this angle as 9π4=2π+π4\dfrac{9\pi }{4}=2\pi +\dfrac{\pi }{4} and replace it in the above equation we get:
z3=542[cos(2π+π4)+isin(2π+π4)]\Rightarrow {{z}^{3}}=54\sqrt{2}\left[ \cos \left( 2\pi +\dfrac{\pi }{4} \right)+i\sin \left( 2\pi +\dfrac{\pi }{4} \right) \right]
According to the one of the trigonometric properties of cosine and sine one of them is cos(2π+θ)=cos(θ)\cos \left( 2\pi +\theta \right)=\cos \left( \theta \right) and sin(2π+θ)=sin(θ)\sin \left( 2\pi +\theta \right)=\sin \left( \theta \right) using these in the above equation we get:
z3=542[cos(π4)+isin(π4)]\Rightarrow {{z}^{3}}=54\sqrt{2}\left[ \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right]
We know that value of cos(π4)=sin(π4)=12\cos \left( \dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}, by substituting this value we get:
z3=542[12+i12]\Rightarrow {{z}^{3}}=54\sqrt{2}\left[ \dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}} \right]
Now we take LCM within the brackets and simplify we get:
z3=542[1+i2]\Rightarrow {{z}^{3}}=54\sqrt{2}\left[ \dfrac{1+i}{\sqrt{2}} \right]
As we can see 2\sqrt{2} is there in both numerator and denominators. So, it gets cancelled. Hence, we are left with the following:
z3=54[1+i]\Rightarrow {{z}^{3}}=54\left[ 1+i \right]
After solving the bracket, we get:
z3=54+54i\Rightarrow {{z}^{3}}=54+54i
Therefore, value of z3=(3+3i)3{{z}^{3}}={{\left( -3+3i \right)}^{3}} is z3=54+54i{{z}^{3}}=54+54i.

Note:
Students can go wrong by using wrong DeMoivre’s formula that is some students use zn=ρn[ncos(θ)+nsin(θ)i]{{z}^{n}}={{\rho }^{n}}\left[ n\cos \left( \theta \right)+n\sin \left( \theta \right)i \right] instead of zn=ρn[cos(nθ)+isin(nθ)]{{z}^{n}}={{\rho }^{n}}\left[ \cos \left( n\theta \right)+i\sin \left( n\theta \right) \right] which further leads to the wrong result. Hence, it’s important to remember DeMoivre’s theorem which is zn=ρn[cos(nθ)+isin(nθ)]{{z}^{n}}={{\rho }^{n}}\left[ \cos \left( n\theta \right)+i\sin \left( n\theta \right) \right] right. Also, you can find the value of θ\theta by observing the graph of given complex no. that is:

Clearly you can see the angle is equal to π2+π4=3π4\dfrac{\pi }{2}+\dfrac{\pi }{4}=\dfrac{3\pi }{4}. Which implies θ=3π4\theta =\dfrac{3\pi }{4}