Solveeit Logo

Question

Question: How do I solve for the two smallest positive solutions for \(\sin \left( 2x \right)\cos \left( 6x \r...

How do I solve for the two smallest positive solutions for sin(2x)cos(6x)cos(2x)sin(6x)=0.35\sin \left( 2x \right)\cos \left( 6x \right)-\cos \left( 2x \right)\sin \left( 6x \right)=-0.35?

Explanation

Solution

Now we are given with an equation in sin and cos. First we will evaluate the equation with the subtraction formula of sin which is sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B . Then we will take sin1{{\sin }^{-1}} and hence find the value of x.

Complete step by step solution:
Now we are given with an equation in sin and cos.
Now let us first understand the functions sinθ\sin \theta and cosθ\cos \theta
These functions are actually trigonometric ratios. Now in a right angle triangle,
sinθ=opposite sidehypotenuse\sin \theta =\dfrac{\text{opposite side}}{\text{hypotenuse}} and cosθ=adjecent sidehypotenuse\cos \theta =\dfrac{\text{adjecent side}}{\text{hypotenuse}} .
Now for each angle we get the value for sin and cos.
Now the function sin and cos both gives values only between -1 and 1.
Now we have an identity which say sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B
Now consider the given equation sin(2x)cos(6x)cos(2x)sin(6x)=0.35\sin \left( 2x \right)\cos \left( 6x \right)-\cos \left( 2x \right)\sin \left( 6x \right)=-0.35
Now using sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B we can write sin(2x)cos(6x)cos(2x)sin(6x)=sin(2x6x)\sin \left( 2x \right)\cos \left( 6x \right)-\cos \left( 2x \right)\sin \left( 6x \right)=\sin \left( 2x-6x \right)
Hence we get the equation as sin(2x6x)=0.35\sin \left( 2x-6x \right)=-0.35
Hence we get, sin(4x)=0.35\sin \left( -4x \right)=-0.35
Now again we know that sin(x)=sinx\sin \left( -x \right)=-\sin x
Hence using this we get, sin(4x)=0.35-\sin \left( 4x \right)=-0.35
Now multiplying the equation by – 1 we get, sin(4x)=0.35\sin \left( 4x \right)=0.35
Now we get, 4x=sin1(0.35)4x={{\sin }^{-1}}\left( 0.35 \right) .
Dividing the whole equation by 4 we get,
x=sin1(0.35)4x=\dfrac{{{\sin }^{-1}}\left( 0.35 \right)}{4} .

Note:
Now note that the formula for sin(AB)\sin \left( A-B \right) is sinAcosBcosAsinB\sin A\cos B-\cos A\sin B hence take care of which value is taken as A or B as this may change the overall sign of the expression. Also for addition we have sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B .