Solveeit Logo

Question

Question: How do I solve \(2{{\sec }^{2}}x+{{\tan }^{2}}x-3=0?\)...

How do I solve 2sec2x+tan2x3=0?2{{\sec }^{2}}x+{{\tan }^{2}}x-3=0?

Explanation

Solution

We use the basic trigonometric identities to solve the given problem. We may use the identity that says secx=1cosx\sec x=\dfrac{1}{\cos x} which is a reciprocal relation. We use another reciprocal relation tanx=sinxcosx.\tan x=\dfrac{\sin x}{\cos x}. Also, we use the Pythagorean relation sin2x+cos2x=1.{{\sin }^{2}}x+{{\cos }^{2}}x=1.

Complete step by step solution:
Consider the given equation which includes the trigonometric functions,
2sec2x+tan2x3=0\Rightarrow 2{{\sec }^{2}}x+{{\tan }^{2}}x-3=0
To solve this equation, we use the reciprocal relations which we have learnt already, secx=1cosx\sec x=\dfrac{1}{\cos x} and tanx=sinxcosx.\tan x=\dfrac{\sin x}{\cos x}. When we square both of these relations, we get sec2x=1cos2x{{\sec }^{2}}x=\dfrac{1}{{{\cos }^{2}}x} and tan2x=sin2xcos2x.{{\tan }^{2}}x=\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}.
Now, we are going to apply these relations in the given equations to get,
21cos2x+sin2xcos2x3=0\Rightarrow 2\dfrac{1}{{{\cos }^{2}}x}+\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}-3=0
In the above equation, we have substituted for sec2x{{\sec }^{2}}x and tan2x.{{\tan }^{2}}x.
In the next step, we are going to multiply the whole equation with cos2x.{{\cos }^{2}}x.
We will get,
2cos2xcos2x+cos2xsin2xcos2x3cos2x=0\Rightarrow \dfrac{2{{\cos }^{2}}x}{{{\cos }^{2}}x}+\dfrac{{{\cos }^{2}}x{{\sin }^{2}}x}{{{\cos }^{2}}x}-3{{\cos }^{2}}x=0
We are cancelling the common factors from both the numerator and the denominator.
So, we get,
2+sin2x3cos2x=0\Rightarrow 2+{{\sin }^{2}}x-3{{\cos }^{2}}x=0
We know that 3cos2x=cos2x4cos2x-3{{\cos }^{2}}x={{\cos }^{2}}x-4{{\cos }^{2}}x
Since we have to simplify the above obtained equation, we use the above fact we have written.
So, we get
2+sin2x+cos2x4cos2x=0\Rightarrow 2+{{\sin }^{2}}x+{{\cos }^{2}}x-4{{\cos }^{2}}x=0
Now with what we get, we are supposed to use the Pythagorean relation that connects the sine function and the cosine function sin2x+cos2x=1.{{\sin }^{2}}x+{{\cos }^{2}}x=1.
The equation will now become,
2+14cos2x=0\Rightarrow 2+1-4{{\cos }^{2}}x=0
We add the numbers as usual to get,
34cos2x=0\Rightarrow 3-4{{\cos }^{2}}x=0
Now we are transposing 33 from the left-hand side to the right-hand side,
4cos2x=3\Rightarrow -4{{\cos }^{2}}x=-3
Now we multiply the above equation with 1.-1.
4cos2x=3\Rightarrow 4{{\cos }^{2}}x=3
Now we are transposing 44 from the left-hand side to the right-hand side,
cos2x=34\Rightarrow {{\cos }^{2}}x=\dfrac{3}{4}
Now we have to find the square root of the whole equation as follows,
cosx=34=34=32\Rightarrow \cos x=\sqrt{\dfrac{3}{4}}=\dfrac{\sqrt{3}}{\sqrt{4}}=\dfrac{\sqrt{3}}{2}
So, we have to find the value of xx for the value of cosx\cos x becomes 32.\dfrac{\sqrt{3}}{2}.
On the other hand, x=cos132.x={{\cos }^{-1}}\dfrac{\sqrt{3}}{2}.
We know that cosx=32\cos x=\dfrac{\sqrt{3}}{2} when x=(π3)c=30.x={{\left( \dfrac{\pi }{3} \right)}^{c}}=30{}^\circ .
That is, cos132=(π6)=30.{{\cos }^{-1}}\dfrac{\sqrt{3}}{2}=\left( \dfrac{\pi }{6} \right){}^\circ =30{}^\circ .
Therefore, the solution of 2sec2x+tan2x3=02{{\sec }^{2}}x+{{\tan }^{2}}x-3=0 is x=(π6)c=30.x={{\left( \dfrac{\pi }{6} \right)}^{c}}=30{}^\circ .

Note:
There is another method to solve this:
2sec2x+tan2x3=0\Rightarrow 2{{\sec }^{2}}x+{{\tan }^{2}}x-3=0
We use the Pythagorean relation sec2xtan2x=1{{\sec }^{2}}x-{{\tan }^{2}}x=1 which implies sec2x=1tan2x.{{\sec }^{2}}x=1-{{\tan }^{2}}x.
2(1+tan2x)+tan2x3=0\Rightarrow 2\left( 1+{{\tan }^{2}}x \right)+{{\tan }^{2}}x-3=0
2+2tan2x+tan2x3=0\Rightarrow 2+2{{\tan }^{2}}x+{{\tan }^{2}}x-3=0
3tan2x1=0\Rightarrow 3{{\tan }^{2}}x-1=0
tan2x=13\Rightarrow {{\tan }^{2}}x=\dfrac{1}{3}
tanx=13\Rightarrow \tan x=\dfrac{1}{\sqrt{3}}
We use the reciprocal relation tanx=sinxcosx,\tan x=\dfrac{\sin x}{\cos x},
sinxcosx=13=1232\Rightarrow \dfrac{\sin x}{\cos x}=\dfrac{1}{\sqrt{3}}=\dfrac{\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}
We know that sinx=12andcosx=32x=(π6).\sin x=\dfrac{1}{2} \text{and} \cos x=\dfrac{\sqrt{3}}{2}\Rightarrow x=\left( \dfrac{\pi }{6} \right).