Solveeit Logo

Question

Question: How do I prove the identity \(\tan \theta \sin \theta + \cos \theta \equiv \sec \theta \)?...

How do I prove the identity tanθsinθ+cosθsecθ\tan \theta \sin \theta + \cos \theta \equiv \sec \theta ?

Explanation

Solution

First, take the left side of identity. Write tanθ\tan \theta in sines and cosines using the quotient identity and simplify it. Next, apply Pythagorean identity in reverse and Combine the numerators over the common denominator. We will get the right side of identity.

Formula used:
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
sin2θ+cos2=1{\sin ^2}\theta + {\cos ^2} = 1
cosθ=1secθ\cos \theta = \dfrac{1}{{\sec \theta }}

Complete step by step answer:
To prove: tanθsinθ+cosθsecθ\tan \theta \sin \theta + \cos \theta \equiv \sec \theta
We will start on the left side.
LHS=tanθsinθ+cosθ{\text{LHS}} = \tan \theta \sin \theta + \cos \theta
Write tanθ\tan \theta in sines and cosines using the quotient identity.
LHS=sinθcosθsinθ+cosθ\Rightarrow {\text{LHS}} = \dfrac{{\sin \theta }}{{\cos \theta }}\sin \theta + \cos \theta
Write sinθ\sin \theta as a fraction with denominator 11.
LHS=sinθcosθsinθ1+cosθ\Rightarrow {\text{LHS}} = \dfrac{{\sin \theta }}{{\cos \theta }} \cdot \dfrac{{\sin \theta }}{1} + \cos \theta
Combine.
LHS=sinθsinθcosθ×1+cosθ\Rightarrow {\text{LHS}} = \dfrac{{\sin \theta \cdot \sin \theta }}{{\cos \theta \times 1}} + \cos \theta
Multiply sinθ×sinθ\sin \theta \times \sin \theta .
LHS=sin2θcosθ×1+cosθ\Rightarrow {\text{LHS}} = \dfrac{{{{\sin }^2}\theta }}{{\cos \theta \times 1}} + \cos \theta
Multiply cosθ\cos \theta by 11.
LHS=sin2θcosθ+cosθ\Rightarrow {\text{LHS}} = \dfrac{{{{\sin }^2}\theta }}{{\cos \theta }} + \cos \theta
Apply Pythagorean identity in reverse.
LHS=1cos2θcosθ+cosθ\Rightarrow {\text{LHS}} = \dfrac{{1 - {{\cos }^2}\theta }}{{\cos \theta }} + \cos \theta
To write cosθ1\dfrac{{\cos \theta }}{1} as a fraction with a common denominator, multiply by cosθcosθ\dfrac{{\cos \theta }}{{\cos \theta }}.
LHS=1cos2θcosθ+cosθcosθcosθcosθ\Rightarrow {\text{LHS}} = \dfrac{{1 - {{\cos }^2}\theta }}{{\cos \theta }} + \dfrac{{\cos \theta }}{{\cos \theta }} \cdot \dfrac{{\cos \theta }}{{\cos \theta }}
Write each expression with a common denominator of cosθ\cos \theta , by multiplying each by an appropriate factor of 11.
Combine.
LHS=1cos2θcosθ+cosθ×cosθcosθ×1\Rightarrow {\text{LHS}} = \dfrac{{1 - {{\cos }^2}\theta }}{{\cos \theta }} + \dfrac{{\cos \theta \times \cos \theta }}{{\cos \theta \times 1}}
Multiply cosθ\cos \theta by 11.
LHS=1cos2θcosθ+cosθ×cosθcosθ\Rightarrow {\text{LHS}} = \dfrac{{1 - {{\cos }^2}\theta }}{{\cos \theta }} + \dfrac{{\cos \theta \times \cos \theta }}{{\cos \theta }}
Multiply cosθ×cosθ\cos \theta \times \cos \theta .
LHS=1cos2θcosθ+cos2θcosθ\Rightarrow {\text{LHS}} = \dfrac{{1 - {{\cos }^2}\theta }}{{\cos \theta }} + \dfrac{{{{\cos }^2}\theta }}{{\cos \theta }}
Combine the numerators over the common denominator.
LHS=1cos2θ+cos2θcosθ\Rightarrow {\text{LHS}} = \dfrac{{1 - {{\cos }^2}\theta + {{\cos }^2}\theta }}{{\cos \theta }}
Simplify the numerator.
LHS=1cosθ\Rightarrow {\text{LHS}} = \dfrac{1}{{\cos \theta }}
Rewrite 1cosθ\dfrac{1}{{\cos \theta }} as secθ\sec \theta .
LHS=secθ\Rightarrow {\text{LHS}} = \sec \theta
LHS=RHS\therefore {\text{LHS}} = {\text{RHS}}
Because the two sides have been shown to be equivalent, the equation is an identity.
tanθsinθ+cosθsecθ\tan \theta \sin \theta + \cos \theta \equiv \sec \theta is an identity
Final solution: Hence, tanθsinθ+cosθsecθ\tan \theta \sin \theta + \cos \theta \equiv \sec \theta .

Additional information:
Trigonometric identity: An equation involving trigonometric ratios of an angle θ\theta (say) is said to be a trigonometric identity if it is satisfied for all values of θ\theta for which the given trigonometric ratios are defined.
For example, cos2θ12cosθ=cosθ(cosθ12){\cos ^2}\theta - \dfrac{1}{2}\cos \theta = \cos \theta \left( {\cos \theta - \dfrac{1}{2}} \right) is a trigonometric identity, whereas cosθ(cosθ12)=0\cos \theta \left( {\cos \theta - \dfrac{1}{2}} \right) = 0 is an equation.
Also, secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }} is a trigonometric identity, because it holds for all values of θ\theta except for which cosθ=0\cos \theta = 0. For cosθ=0\cos \theta = 0, secθ\sec \theta is not defined.

Note: In above question, we can prove the identity by plotting the left side and the right side of the identity separately.
Graph of f(θ)=tanθsinθ+cosθf\left( \theta \right) = \tan \theta \sin \theta + \cos \theta :

Graph of g(θ)=secθg\left( \theta \right) = \sec \theta :

Both functions have the same graph, meaning they are equal or coincide at every point.
Final solution: Hence, tanθsinθ+cosθsecθ\tan \theta \sin \theta + \cos \theta \equiv \sec \theta .