Solveeit Logo

Question

Question: How do I find the value of \[\cot \left( {\dfrac{\pi }{{12}}} \right)\]?...

How do I find the value of cot(π12)\cot \left( {\dfrac{\pi }{{12}}} \right)?

Explanation

Solution

Trigonometric functions are those functions that tell us the relation between the three sides of a right-angled triangle. Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions; sine, cosine and tangent are the main functions while cosecant, secant and cotangent are the reciprocal of sine, cosine and tangent respectively. Thus the given function can be converted in the form of tangent easily. First we find the value of tangent function then taking the reciprocal of tangent we get the cotangent value. Also we need to know the supplementary angle of sine.

Complete step-by-step solution:
Given, cot(π12)\cot \left( {\dfrac{\pi }{{12}}} \right).
We know that the
cot(π12)=1tan(π12)\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}.
Now we find the value of tan(π12)\tan \left( {\dfrac{\pi }{{12}}} \right).
We can express π12=π3π4\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}
Then we have

tan(π12)=tan(π3π4) tan(π3π4)  \Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\\ \Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\\

We know the difference formula for tangent that is tan(AB)=tanAtanB1+tanA.tanB\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}. Here A=π3A = \dfrac{\pi }{3}andB=π4B = \dfrac{\pi }{4}.
tan(π3π4)=tanπ3tanπ41+tanπ3.tanπ4\Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}
tan(π12)=tanπ3tanπ41+tanπ3.tanπ4\Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}
We know tanπ3=3\tan \dfrac{\pi }{3} = \sqrt 3 and tanπ4=1\tan \dfrac{\pi }{4} = 1. Substituting we have,
311+3.1\Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 .1}}
311+3\Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}
To simplify further we rationalize this
311+3×1313\Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \times \dfrac{{1 - \sqrt 3 }}{{1 - \sqrt 3 }}
(31)(13)(1+3)(13)\Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {1 - \sqrt 3 } \right)}}{{\left( {1 + \sqrt 3 } \right)\left( {1 - \sqrt 3 } \right)}}
Denominator is of the form a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b),
3(13)1(13)(12(3)2)\Rightarrow \dfrac{{\sqrt 3 \left( {1 - \sqrt 3 } \right) - 1\left( {1 - \sqrt 3 } \right)}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}
3(3)21+3(12(3)2)\Rightarrow \dfrac{{\sqrt 3 - {{\left( {\sqrt 3 } \right)}^2} - 1 + \sqrt 3 }}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}
Square and square root will cancel out,
331+3(13)\Rightarrow \dfrac{{\sqrt 3 - 3 - 1 + \sqrt 3 }}{{\left( {1 - 3} \right)}}
2342\Rightarrow \dfrac{{2\sqrt 3 - 4}}{{ - 2}}
Taking 2 common we have,
2(32)2\Rightarrow \dfrac{{2\left( {\sqrt 3 - 2} \right)}}{{ - 2}}
(32)\Rightarrow - \left( {\sqrt 3 - 2} \right)
23\Rightarrow 2 - \sqrt 3
Thus we have tan(π12)=23\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 .
Now we have,
cot(π12)=1tan(π12)\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}
cot(π12)=123\Rightarrow \cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{2 - \sqrt 3 }}.

Note: Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.