Solveeit Logo

Question

Question: How do I evaluate \[\tan \left( \dfrac{\pi }{3} \right)\] without using a calculator?...

How do I evaluate tan(π3)\tan \left( \dfrac{\pi }{3} \right) without using a calculator?

Explanation

Solution

To solve this equation, we need to know the relationship between the tanx,sinx&cosx\tan x,\sin x\And \cos x, which states that, tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}. We will use this relation to find the value of tan(π3)\tan \left( \dfrac{\pi }{3} \right). Also, we should know the values of sin(π3)&cos(π3)\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right).

Complete step by step answer:
We know that the trigonometric ratios tanx,sinx&cosx\tan x,\sin x\And \cos x are related to each other in the following way, tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}. As π3\dfrac{\pi }{3} is a special angel, we know the values of sin(π3)&cos(π3)\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right). The value of sin(π3)\sin \left( \dfrac{\pi }{3} \right) equals 32\dfrac{\sqrt{3}}{2}, and the value of cos(π3)\cos \left( \dfrac{\pi }{3} \right) is 12\dfrac{1}{2}.
Using the relationship between the ratios, and these values, we can find the value of tan(π3)\tan \left( \dfrac{\pi }{3} \right) as follows
tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}
Substituting x=π3x=\dfrac{\pi }{3}, we get
tan(π3)=sin(π3)cos(π3)\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\sin \left( \dfrac{\pi }{3} \right)}{\cos \left( \dfrac{\pi }{3} \right)}
Substituting the values of sin(π3)&cos(π3)\sin \left( \dfrac{\pi }{3} \right)\And \cos \left( \dfrac{\pi }{3} \right) in the above equation, we get
tan(π3)=3212\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}
As the fraction in the numerator and the fraction in the denominator have the same denominator, we can cancel it out, by doing this we get
tan(π3)=3\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}
Thus, we get the value of tan(π3)\tan \left( \dfrac{\pi }{3} \right).

Note:
We can also find the value of tan(π3)\tan \left( \dfrac{\pi }{3} \right), if we know the value of the tangent of its half, that is the value of tan(π6)\tan \left( \dfrac{\pi }{6} \right). The value of tan(π6)\tan \left( \dfrac{\pi }{6} \right) is 13\dfrac{1}{\sqrt{3}}.
We know the formula for tan(2x)\tan (2x) is 2tanx1tan2x\dfrac{2\tan x}{1-{{\tan }^{2}}x}. As π3\dfrac{\pi }{3} is twice of the π6\dfrac{\pi }{6}, we can use this formula to calculate the value of tan(π3)\tan \left( \dfrac{\pi }{3} \right), using the value of tan(π6)\tan \left( \dfrac{\pi }{6} \right), as follows
tan(2x)=2tanx1tan2x\tan (2x)=\dfrac{2\tan x}{1-{{\tan }^{2}}x}
Substitute x=π6x=\dfrac{\pi }{6} in the above formula, we get

& \Rightarrow \tan \left( 2\left( \dfrac{\pi }{6} \right) \right)=\dfrac{2\tan \left( \dfrac{\pi }{6} \right)}{1-{{\tan }^{2}}\left( \dfrac{\pi }{6} \right)} \\\ & \Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{2\tan \left( \dfrac{\pi }{6} \right)}{1-{{\tan }^{2}}\left( \dfrac{\pi }{6} \right)} \\\ \end{aligned}$$ Substituting the value of $$\tan \left( \dfrac{\pi }{6} \right)$$ as $$\dfrac{1}{\sqrt{3}}$$ in the above formula, we get $$\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{2\left( \dfrac{1}{\sqrt{3}} \right)}{1-{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}$$ $$\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{2}{\sqrt{3}}}{1-\dfrac{1}{3}}=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{2}{3}}$$ To make the denominator of the fraction in numerator and denominator same, we multiply and divide the fraction in the numerator by $$\sqrt{3}$$, we get $$\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\dfrac{\dfrac{2}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}}{\dfrac{2}{3}}=\dfrac{\dfrac{2\sqrt{3}}{3}}{\dfrac{2}{3}}$$ Canceling the common factors from numerator and denominator, we get $$\Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}$$