Question
Question: How do I evaluate \(\int {\dfrac{{1 + \cos x}}{{\sin x}}dx} \)?...
How do I evaluate ∫sinx1+cosxdx?
Solution
First, separate the denominator in the integral and use trigonometric identities to simplify it. Then, use the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions. Next, use integral formula for cosecant and cotangent function. Then, use logarithm property and trigonometry identity to further simplify the result.and get the desired result.
Formula used:
The integral of the product of a constant and a function = the constant × integral of the function.
i.e., ∫(kf(x)dx)=k∫f(x)dx, where k is a constant.
Trigonometric identity: cosecx=sinx1, cotx=sinxcosx
The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
Integration formula: ∫cosecxdx=log∣cosecx−cotx∣+C and ∫cotxdx=log∣sinx∣+C
Complete step by step answer:
We have to find ∫sinx1+cosxdx…(i)
First, separate the denominator in integral (i).
∫[sinx1+sinxcosx]dx…(ii)
Now, use trigonometry identities cosecx=sinx1 and cotx=sinxcosx in integral (ii).
∫[cosecx+cotx]dx…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
So, in above integral (iii), we can use above property
∫cosecxdx+∫cotxdx…(iv)
Now, use property ∫cosecxdx=log∣cosecx−cotx∣+C and ∫cotxdx=log∣sinx∣+C in integral (iv).
⇒log∣cosecx−cotx∣+log∣sinx∣+C
Now, use property logm+logn=logmn to simplify the above result.
⇒log∣(cosecx−cotx)(sinx)∣+C
Multiply sinx to (cosecx−cotx), we get
⇒log∣cosecx×sinx−cotx×sinx∣+C
Now, use trigonometry identities cosecx=sinx1 and cotx=sinxcosx.
⇒logsinx1×sinx−sinxcosx×sinx+C
Cancel the common factor.
⇒log∣1−cosx∣+C
Hence, ∫sinx1+cosxdx=log∣1−cosx∣+C.
Note: ∫cotxdx=log∣sinx∣+C
We have ∫cotxdx=∫sinxcosxdx
Put sinx=t so that cosxdx=dt.
Then, ∫cotxdx=∫tdt=log∣t∣+C=log∣sinx∣+C.
And, ∫cosecxdx=log∣cosecx−cotx∣+C
We have ∫cosecxdx=∫(cosecx+cotx)cosecx(cosecx+cotx)dx
Put cosecx+cotx=t so that −cosecx(cosecx+cotx)dx=dt.
So, ∫cosecxdx=−∫tdt=log∣t∣=−log∣cosecx+cotx∣+C
It can also be written as
∫cosecxdx=−logcosecx−cotxcosec2x−cot2x+C
Therefore, ∫cosecxdx=log∣cosecx−cotx∣+C.