Solveeit Logo

Question

Question: How do I evaluate \(\cos \left( \dfrac{\pi }{5} \right)\) without using a calculator....

How do I evaluate cos(π5)\cos \left( \dfrac{\pi }{5} \right) without using a calculator.

Explanation

Solution

Now first let us consider θ=π10\theta =\dfrac{\pi }{10} . Now we will use the relation cos(π2θ)=sin(θ)\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \left( \theta \right) we will write the form an equation using cos3θ\cos 3\theta . Now we know that cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta and sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta . Hence using this we will simplify the equation and form a quadratic in sinθ\sin \theta using the identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. Now using the formula for roots of the quadratic equation we will find the value of sinθ\sin \theta . Now we will find the value of cos(π5)\cos \left( \dfrac{\pi }{5} \right) by substituting the value of sinθ\sin \theta obtained in the equation cos2θ=12sin2θ\cos 2\theta =1-2{{\sin }^{2}}\theta .

Complete step-by-step solution:
Now first let us consider θ=π10\theta =\dfrac{\pi }{10}.
Now we want to find the value of cos2θ\cos 2\theta .
Now first consider the value of cos3θ\cos 3\theta
cos3θ=cos3π10 cos3θ=cos(π2+3π10π2) cos3θ=cos(π2+3π5π10) cos3θ=cos(π22π10) cos3θ=cos(π2π5) \begin{aligned} & \Rightarrow \cos 3\theta =\cos \dfrac{3\pi }{10} \\\ & \Rightarrow \cos 3\theta =\cos \left( \dfrac{\pi }{2}+\dfrac{3\pi }{10}-\dfrac{\pi }{2} \right) \\\ & \Rightarrow \cos 3\theta =\cos \left( \dfrac{\pi }{2}+\dfrac{3\pi -5\pi }{10} \right) \\\ & \Rightarrow \cos 3\theta =\cos \left( \dfrac{\pi }{2}-\dfrac{2\pi }{10} \right) \\\ & \Rightarrow \cos 3\theta =\cos \left( \dfrac{\pi }{2}-\dfrac{\pi }{5} \right) \\\ \end{aligned}
Now we know that cos(π2α)=sinα\cos \left( \dfrac{\pi }{2}-\alpha \right)=\sin \alpha .
Hence we get,
cos3θ=sin(π5) cos3θ=sin2θ \begin{aligned} & \Rightarrow \cos 3\theta =\sin \left( \dfrac{\pi }{5} \right) \\\ & \Rightarrow \cos 3\theta =\sin 2\theta \\\ \end{aligned}
Now we have cos3θ=sin2θ\cos 3\theta =\sin 2\theta .
We know that cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta and sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
Hence substituting the formulas we get, ‘
4cos3θ3cosθ=2sinθcosθ\Rightarrow 4{{\cos }^{3}}\theta -3\cos \theta =2\sin \theta \cos \theta
Now dividing the above equation by cosθ\cos \theta we get,
4cos2θ3=2sinθ\Rightarrow 4{{\cos }^{2}}\theta -3=2\sin \theta
Now we know that 1sin2θ=cos2θ1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta Hence using this we get,
4(1sin2θ)3=2sinθ 44sin2θ3=2sinθ 4sin2θ+2sinθ1=0 \begin{aligned} & \Rightarrow 4\left( 1-{{\sin }^{2}}\theta \right)-3=2\sin \theta \\\ & \Rightarrow 4-4{{\sin }^{2}}\theta -3=2\sin \theta \\\ & \Rightarrow 4{{\sin }^{2}}\theta +2\sin \theta -1=0 \\\ \end{aligned}
Now the given equation is a quadratic equation in sinθ\sin \theta . We know that the solution of the quadratic equation of the form ax2+bx+ca{{x}^{2}}+bx+c is given by x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}.
Hence the solution to the given equation is
sinθ=2±224(4)(1)2(4) sinθ=2±4+168 sinθ=2±208 sinθ=2±258 sinθ=1±54 \begin{aligned} & \Rightarrow \sin \theta =\dfrac{-2\pm \sqrt{{{2}^{2}}-4\left( 4 \right)\left( -1 \right)}}{2\left( 4 \right)} \\\ & \Rightarrow \sin \theta =\dfrac{-2\pm \sqrt{4+16}}{8} \\\ & \Rightarrow \sin \theta =\dfrac{-2\pm \sqrt{20}}{8} \\\ & \Rightarrow \sin \theta =\dfrac{-2\pm 2\sqrt{5}}{8} \\\ & \Rightarrow \sin \theta =\dfrac{-1\pm \sqrt{5}}{4} \\\ \end{aligned}
Now cos2θ\cos 2\theta is nothing but 12sin2θ1-2{{\sin }^{2}}\theta . Hence we get,
cos2θ=12(1±54)2 cos2θ=12(1+5±25)16 cos2θ=86±258 cos2θ=1±54 \begin{aligned} & \Rightarrow \cos 2\theta =1-2{{\left( \dfrac{-1\pm \sqrt{5}}{4} \right)}^{2}} \\\ & \Rightarrow \cos 2\theta =1-2\dfrac{\left( 1+5\pm 2\sqrt{5} \right)}{16} \\\ & \Rightarrow \cos 2\theta =\dfrac{8-6\pm 2\sqrt{5}}{8} \\\ & \Rightarrow \cos 2\theta =\dfrac{1\pm \sqrt{5}}{4} \\\ \end{aligned}
Now since θ=π10\theta =\dfrac{\pi }{10} we have
cos(π5)=1±54\Rightarrow \cos \left( \dfrac{\pi }{5} \right)=\dfrac{1\pm \sqrt{5}}{4}

Note: Now note that to find the solution of such equation we will try to write a trigonometric equation which is satisfied by the given θ\theta . Then we will try to convert the equation such that we have just one trigonometric function in the equation. Hence we will solve the equation to find the value. Now we can easily use different identities to find the trigonometric ratio required from the trigonometric ratio obtained.