Solveeit Logo

Question

Question: How do I calculate the Fourier transform of \(\dfrac{a}{{2\pi }}\dfrac{1}{{{a^2} + {x^2}}}\)?...

How do I calculate the Fourier transform of a2π1a2+x2\dfrac{a}{{2\pi }}\dfrac{1}{{{a^2} + {x^2}}}?

Explanation

Solution

The given equation is a2π1a2+x2\dfrac{a}{{2\pi }}\dfrac{1}{{{a^2} + {x^2}}}
We use the Fourier transform. Compute this definite integral, consider the following complex variable function over a domain.
We use the integral function and contour. And then we use the residue theorem.
Finally we get the result.

Complete step by step answer:
The given equation is a2π1a2+x2\dfrac{a}{{2\pi }}\dfrac{1}{{{a^2} + {x^2}}}
Thea2π\dfrac{a}{{2\pi }} weight of the function or the12π\dfrac{1}{{\sqrt {2\pi } }}weight of the transform and just calculate
Ix=eiωxa2+x2dx\Rightarrow {I_x} = \int\limits_{ - \infty }^\infty {\dfrac{{{e^{i\omega x}}}}{{{a^2} + {x^2}}}dx}, wherexRx \in \mathbb{R}
In order to compute this define integral, consider the following complex variable function over a domainC\mathbb{C} :
f(z)=eiωza2+z2\Rightarrow f(z) = \dfrac{{{e^{i\omega z}}}}{{{a^2} + {z^2}}}
And it’s associated contour integral:
Cf(z)dz\Rightarrow \oint\limits_C {f(z)dz}
Where CC is the following semi-circular contour in the complex plane with radius R>0R > 0.
We will restrict RR to enclose the poles in the upper quadrants once we have analyzed the poles of f(z)f(z). The denominator of the integrand isa2+z2{a^2} + {z^2}, and so we have simples poles whena2+z2=0z=±ai{a^2} + {z^2} = 0 \Rightarrow z = \pm ai
We need only be concerned with the poles in Q1{Q_1} and Q2{Q_2}, that (providing we make RR large enough) lie within our contour CC, that is the pole z=aiz = ai is positive.
So the:
Cf(z)dz=RRf(x)dx+γRf(z)dz\Rightarrow \oint\limits_C {f(z)dz} = \int_{ - R}^R {f(x)dx} + \int\limits_{\gamma R} {f(z)dz}
As CC encloses a single pole:
α=ai\alpha = ai (Assuming a>0a > 0)
Then by the residue theorem:
\Rightarrow \oint\limits_C {f(z)dz = 2\pi i} \times \left( {{\text{sum of the residues of the poles of }}f(z){\text{ within }}C} \right) = 2\pi i\left\\{ {re{s_{z = \alpha }}f(z)} \right.
And we can calculate the residues as follows:
resz=α=limzα(zα)f(Z)\Rightarrow re{s_{z = \alpha }} = \mathop {\lim }\limits_{z \to \alpha } (z - \alpha )f(Z)
Now we substituteα\alpha and f(z)f(z) in the residue equation, hence we get
limzai(zai)(eiωza2+z2)\Rightarrow \mathop {\lim }\limits_{z \to ai} (z - ai)\left( {\dfrac{{{e^{i\omega z}}}}{{{a^2} + {z^2}}}} \right)
We expand the(a2+z2)({a^2} + {z^2}), hence we get
limzai(zai)(eiωz(zai)(z+ai))\Rightarrow \mathop {\lim }\limits_{z \to ai} (z - ai)\left( {\dfrac{{{e^{i\omega z}}}}{{(z - ai)(z + ai)}}} \right)
Now we cancel the common term, hence we get
limzai(eiωz(z+ai))\Rightarrow \mathop {\lim }\limits_{z \to ai} \left( {\dfrac{{{e^{i\omega z}}}}{{(z + ai)}}} \right)
As zaiz \to aiSubstitute the expression, hence we get
(eiωai(ai+ai))\Rightarrow \left( {\dfrac{{{e^{i\omega ai}}}}{{(ai + ai)}}} \right)
Add the denominator, hence we get
(eiωai2ai)\Rightarrow \left( {\dfrac{{{e^{i\omega ai}}}}{{2ai}}} \right)
i×i=i2=1i \times i = {i^2} = - 1
We apply the i×i=i2=1i \times i = {i^2} = - 1 expression in the exponent, hence we get
(eωa2ai)\Rightarrow \left( {\dfrac{{{e^{ - \omega a}}}}{{2ai}}} \right)
Thus:
Cf(z)dz=2πieωa2ai\Rightarrow \oint\limits_C {f(z)dz} = 2\pi i\dfrac{{{e^{ - \omega a}}}}{{2ai}}
Now we cancel the common term, hence we get
Cf(z)dz=πeωaa\Rightarrow \oint\limits_C {f(z)dz} = \dfrac{{\pi {e^{ - \omega a}}}}{a}
Now, as we let RR \to \infty we get,
Cf(z)dz=f(x)dx+γRf(z)dz\Rightarrow \oint\limits_C {f(z)dz} = \int_{ - \infty }^\infty {f(x)dx} + \int\limits_{\gamma R} {f(z)dz}
As is often the case with contour integrals, we find that
limRγRf(z)dz=0\Rightarrow \mathop {\lim }\limits_{R \to \infty } \int\limits_{\gamma R} {f(z)dz = 0}
So we will end up with the result:
eiωxa2+x2=πeωaa\Rightarrow \int_{ - \infty }^\infty {\dfrac{{{e^{i\omega x}}}}{{{a^2} + {x^2}}}} = \dfrac{{\pi {e^{ - \omega a}}}}{a}

Note:
The Fourier transform is an important image processing tool which is used to decompose an image into its sine and cosine components. The output of the transformation represents the image in the Fourier or frequency domain, while the input image is the spatial domain equivalent. In the Fourier domain image, each point represents a particular frequency contained in the spatial domain image.
The Fourier transform is used in a wide range of applications, such as image analysis, image filtering, image reconstruction and image compression.