Solveeit Logo

Question

Question: How can you prove the trigonometric identity of the following: \(\tan (x + {45^ \circ }) - \tan ({45...

How can you prove the trigonometric identity of the following: tan(x+45)tan(45x)=2tan2x\tan (x + {45^ \circ }) - \tan ({45^ \circ } - x) = 2\tan 2x

Explanation

Solution

We can solve these types of questions easily if we are familiar with its formulas. We will expand the two terms of tan which are on the left side. We will take the L.C.M. of the denominator and simplify them. We will use formulas and try to convert the equation in terms of tan2x.

Complete step-by-step solution:
We have to prove that tan(x+45)tan(45x)\tan (x + {45^ \circ }) - \tan ({45^ \circ } - x) is equal to 2tan2x2\tan 2x .
We will firstly simplify the term tan(x+45)\tan (x + {45^ \circ }) and tan(45x)\tan ({45^ \circ } - x) individually
We know that   tan(a+b)=tana+tanb1tana×tanb\;tan(a + b) = \dfrac{{tana + tanb}}{{1 - tana \times tanb}} ……………(1)
We will use the equation 1 and expand tan(x+45)\tan (x + {45^ \circ })
  tan(x+45)=tanx+tan451tanx×tan45\; \Rightarrow tan(x + 45) = \dfrac{{\tan x + tan45}}{{1 - \tan x \times tan45}}
We have put the value of tan45
  tan(x+45)=tanx+11tanx×1\; \Rightarrow tan(x + 45) = \dfrac{{\tan x + 1}}{{1 - \tan x \times 1}} ………………(2)
We know that   tan(ab)=tanatanb1+tana×tanb\;tan(a - b) = \dfrac{{tana - tanb}}{{1 + tana \times tanb}} ……………(3)
Similarly, we will expand tan(45x)\tan ({45^ \circ } - x) using the equation 3
  tan(45x)=tan45tanx1+tan45×tanx\; \Rightarrow tan(45 - x) = \dfrac{{\tan 45 - \tan x}}{{1 + \tan 45 \times \tan x}}
We have put the value of tan45
  tan(45x)=1tanx1+1×tanx\; \Rightarrow tan(45 - x) = \dfrac{{1 - \tan x}}{{1 + 1 \times \tan x}} ………………….(4)
We will substitute the value from the equation 2 and 4 in the equation tan(x+45)tan(45x)\tan (x + {45^ \circ }) - \tan ({45^ \circ } - x)
=tan(x+45)tan(45x)= \tan (x + {45^ \circ }) - \tan ({45^ \circ } - x)
=  tanx+11tanx1tanx1+tanx= \;\dfrac{{\tan x + 1}}{{1 - \tan x}} - \dfrac{{1 - \tan x}}{{1 + \tan x}}
We will take the L.C.M. and simplify it
=  (tanx+1)2(1tanx)2(1tanx)(1+tanx)= \;\dfrac{{{{\left( {\tan x + 1} \right)}^2} - {{\left( {1 - \tan x} \right)}^2}}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}
We have expanded the squared terms
=  tan2x+1+2tanx(1+tan2x2tanx)(1tanx)(1+tanx)= \;\dfrac{{{{\tan }^2}x + 1 + 2\tan x - \left( {1 + {{\tan }^2}x - 2\tan x} \right)}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}
=  tan2x+1+2tanx1tan2x+2tanx(1tanx)(1+tanx)= \;\dfrac{{{{\tan }^2}x + 1 + 2\tan x - 1 - {{\tan }^2}x + 2\tan x}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}
=  4tanx(1tanx)(1+tanx)= \;\dfrac{{4\tan x}}{{\left( {1 - \tan x} \right)\left( {1 + \tan x} \right)}}
We know that tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}
So, we convert the above equation in terms of tan2x, we get
=  2tan2x= \;2\tan 2x
Hence, we proved that tan(x+45)tan(45x)=2tan2x\tan (x + {45^ \circ }) - \tan ({45^ \circ } - x) = 2\tan 2x .

Note: Sometimes we solve the question but we can't reach our final answer. It happens maybe because of the wrong approach, for this particular question another possibility is that we can't convert our last result to our desired result. We should also memorise all of the usual angle values of sin, cosine, and tan.