Solveeit Logo

Question

Question: How can you prove that \[\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan \left( a \right)}}{{...

How can you prove that cot(a45)=1+tan(a)tan(a)1\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan \left( a \right)}}{{\tan \left( a \right) - 1}} ?

Explanation

Solution

In the above question, we are given a trigonometric equation containing the tangent and cotangent function. We have to prove that cot(a45)=1+tan(a)tan(a)1\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan \left( a \right)}}{{\tan \left( a \right) - 1}} . In order to approach the solution, we can use the trigonometric identity of the cotangent function which is given as,
cot(AB)=cotAcotB+1cotBcotA\Rightarrow \cot \left( {A - B} \right) = \dfrac{{\cot A\cot B + 1}}{{\cot B - \cot A}}
Use the above identity in the LHS of the equation cot(a45)=1+tan(a)tan(a)1\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan \left( a \right)}}{{\tan \left( a \right) - 1}} and then put the value for cot45=1\cot 45^\circ = 1 in the RHS. Further after substituting cota=1tana\cot a = \dfrac{1}{{\tan a}} and 1=tanatana1 = \dfrac{{\tan a}}{{\tan a}} and solving we can obtain the required RHS equal to the LHS.

Complete step by step answer:
Given trigonometric equation is cot(a45)=1+tan(a)tan(a)1\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan \left( a \right)}}{{\tan \left( a \right) - 1}} .
We have to prove that the LHS is equal to the RHS.
Since, we that the trigonometric identity for a cotangent function which is given as,
cot(AB)=cotAcotB+1cotBcotA\Rightarrow \cot \left( {A - B} \right) = \dfrac{{\cot A\cot B + 1}}{{\cot B - \cot A}}
Now putting A=aA = a and B=45B = 45^\circ in the above identity, we get
cot(a45)=cotacot45+1cot45cota\Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\cot a\cot 45^\circ + 1}}{{\cot 45^\circ - \cot a}}
Since we know that cot45=1\cot 45^\circ = 1 , therefore now we have
cot(a45)=cota+11cota\Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\cot a + 1}}{{1 - \cot a}}
Putting cota=1tana\cot a = \dfrac{1}{{\tan a}} and 1=tanatana1 = \dfrac{{\tan a}}{{\tan a}} in the RHS of the above equation, we can write
cot(a45)=1tana+tanatanatanatana1tana\Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\dfrac{1}{{\tan a}} + \dfrac{{\tan a}}{{\tan a}}}}{{\dfrac{{\tan a}}{{\tan a}} - \dfrac{1}{{\tan a}}}}
Solving the numerator and the denominator in the RHS, we get
cot(a45)=1+tanatanatana1tana\Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\dfrac{{1 + \tan a}}{{\tan a}}}}{{\dfrac{{\tan a - 1}}{{\tan a}}}}
Cancelling the tana\tan a term from the numerator and the denominator, we can write the above equation as,
cot(a45)=1+tanatana1\Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan a}}{{\tan a - 1}}
Hence,
LHS=RHSLHS = RHS
That is the required proof of the above given problem.
Therefore, we have solved cot(a45)=1+tanatana1\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan a}}{{\tan a - 1}}.

Note:
The cotangent function or the cot function is exactly the opposite of the tangent function or the tan function. Therefore it is written as
cotx=1tanx\Rightarrow \cot x = \dfrac{1}{{\tan x}}
If θ\theta is an acute angle at the vertex A in a right angled triangle ABC\vartriangle ABC , right angled at B then the cotangent function is defined as the ratio of the base AB and the perpendicular height BC, i.e.
cotθ=baseheight\Rightarrow \cot \theta = \dfrac{{base}}{{height}}
Or,
cotθ=ABBC\Rightarrow \cot \theta = \dfrac{{AB}}{{BC}}